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his essay is an attempt to exposit and am-
plify an erudite piece of mathematical writ-
ing by the late Richard P. Feynman (1918-

1988) in his extraordinarily wonderful book The 
Feynman Lectures on Physics.1 In chapter 22 of vol-
ume 1, he attempts to unfold the grand map of al-
gebra. He does so as preparatory background to 
his subsequent study of the physics of oscillatory 
systems. 

Feynman’s gift was in teaching and seeing 
connections. He had an uncanny ability to explain 
the complex. To paraphrase him, he once said, 
“Unless we can explain a topic simply, then we 
really do not understand it.” 

For years, I have observed with increasing dismay high school advanced algebra textbooks cover topics 
like number systems and logarithms (to the base 10 and the base e). The reason for my dismay is that very 
rarely have I seen these topics presented in the context of the big picture and the principle of interconnect-
edness. I have had to resort to other sources, and there are many, that explain these beautifully intertwined 
branches, hanging resplendently with a varied array of mathematical flora.2 Feynman, in ten short pages, ex-
posits the connection between number systems, algebra, logarithms, geometry, and trigonometry, in rigor-
ously beautiful simplicity. Every high school student of mathematics should be exposed to this type of analysis, and it is to 
this end that I exegete and augment Feynman’s gift of logical exposition. 

Feynman begins with the set of counting or natural numbers (also called positive integers). We label this 

set  or +.3 He assumes the existence of this set along with the existence of zero. The positive integers, 
along with zero, are sometimes called the set of whole numbers.4 We label this set W. Hence, using set the-

ory symbols, W = 0   or W = 0  +.5 From this starting point, Feynman defines addition, multiplica-
tion, and exponentiation as follows: 

1. Addition in + or : Let a, b  + or  (i.e.., a and b represent numbers that are members of the 
set of positive integers or natural numbers). If we start with a and count successively one unit b 
times, the number resulting from this counting procedure is a + b. In other words, addition is counting 
forward. 

2. Multiplication in + or : Let a, b  +. If we start with zero and add a to it, b times in succession, 

the number resulting from this counting procedure is b  a. Multiplication is repeated addition by the same 
number or, in symbols: 

                                                 
1 Richard P. Feynman, The Feynman Lectures on Physics: Commemorative Issue (Cal Tech, [1963] 1989), I:22-1 to 22-10. 
2 The books by mathematics professor Eli Maor – Trigonometric Delights, To Infinity and Beyond, e: The Story of a Number, The Pythago-
rean Theorem – are one example of this type of exposition. Math students who read books like these will not only be intellectually 
challenged, but will also be drawn into what I call a “zone of mathematical beauty and elegance.” 
3  comes from the German word zahl meaning “number.” +, in symbols, means the “set of positive integers.” 
4 Integer, in Latin, means “whole or undivided.”  
5 In set theory, the symbol  means “union.” 
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timesb

b a a a a a       

3. Exponentiation in + or : Let a, b  +. If we start with 1 and multiply by a, b times in succes-
sion, the number resulting from this counting procedure is ab. Exponentiation is repeated multiplication by 
the same number or, in symbols: 

times

b

b

a a a a a       

 Earlier in his book, Feynman seeks to answer the question, “What is gravity?” He states, “All we have 
done is to describe how the earth moves around the sun, but we have not said what makes it go. Newton made 
no hypotheses about this; he was satisfied to find what it did without getting into the machinery of it. No one 
has since given any machinery.”6 A few sentences later he states, “Why can we use mathematics to describe na-
ture without a mechanism behind it? No one knows. We have to keep going because we find out more that 
way.”7 It should not come as a surprise that Feynman, as a covenant breaker, could not account for why 
mathematics works. To him, mathematics “works” so let’s use it (an appeal to pragmatism). Regarding the 
operation of counting, Feynman says, “We suppose that we already know what integers are, what zero is, 
and what it means to increase a number by one unit.”8 He makes no attempt to justify why we can count and as-
sumes that this “accounting for counting” is either irrelevant or impossible. As a covenant keeper, professor 
Vern Poythress demonstrates that the Triune God of Scripture is the sure foundation for counting:  

It may surprise the reader to learn that not everyone agrees that ‘2 + 2 = 4’ is true. But, on second 
thought, it must be apparent that no radical monist can remain satisfied with ‘2 + 2 = 4.’ If with Par-
menides one thinks that all is one, if with Vedantic Hinduism he thinks that all plurality is illusion, ‘2 + 2 
= 4’ is an illusory statement. On the ultimate level of being, 1 + 1 = 1. What does this imply? Even the 
simplest arithmetical truths can be sustained only in a world-view which acknowledges an ultimate meta-
physical plurality of the world – whether Trinitarian, Polytheistic, or chance-produced plurality. At the 
same time, the simplest arithmetical truths also presuppose ultimate metaphysical unity for the world – 
at least sufficient unity to guard the continued existence of “sames.” Two apples remain apples while I 
am counting them; the symbol ‘2’ is in some sense the same symbol at different times, standing for the 
same number. So, at the very beginning of arithmetic, we are already plunged into the metaphysical 
problem of unity and plurality, of the one and the many. As Van Til and Rushdoony have pointed out, 
this problem finds its solution only in the doctrine of the ontological Trinity. For the moment, we shall 
not dwell on the thorny metaphysical arguments, but note only that without some real unity and plural-
ity, ‘2 + 2 = 4’ falls into limbo.9 

 Feynman was gifted by God to see connections in the physical realm, but he was blind to the ultimate 
connection. The coherence of mathematics and the physical world exists only because of the nature of the Cre-
ator God. Mathematics works only because God has created the human mind to think mathematically while, 
at the same time, the physical creation reflects the covenantal order of the Creator in such a way that we can 
model it by mathematical propositions. Feynman blinded himself to this truth but in his daily work as a 

                                                 
6 Feynman, I:7-9. 
7 Ibid. 
8 Ibid., I:22-1. 
9 Vern Poythress, “A Biblical View of Mathematics,” The Foundations of Christian Scholarship (Vallecito: Ross House Books, 1976), p. 
161. 
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physicist he had to assume, albeit unconsciously, the truth of the Christian system every time he discovered 
and articulated the wondrous connections hidden in both mathematical propositions and physical reality. 

 With this starting point established, let’s return to the structure of algebra. Feynman next lists eleven 
logical consequences of addition, multiplication, and exponentiation (to simplify our subsequent discussions, 

we shall name these eleven properties as the Consequences). If a, b, c  + or , then: 

1. a + b = b + a (commutative property of addition) 
2. a + (b + c) = (a + b) + c (association property of addition) 
3. There exists a number 0 such that 0 + a = a (identity element of addition)10 
4. ab = ba (commutative property of multiplication) 
5. a(bc) = (ab)c (association property of multiplication) 
6. 1a = a (identity element of multiplication) 
7. a(b + c) = ab + ac (distributive property of multiplication over addition) 

 The final four properties are logical consequences of exponentiation: 
8. a1 = a  
9. abac = ab + c (we shall be employing this consequence many times in the analysis that follows) 
10. (ab)c = acbc 
11. (ab)c = abc 

 Note that 0 and 1 have unique properties. They are the identity elements of addition and multiplication 
respectively. These eleven properties justify almost every operation in algebra.  
 Next, Feynman defines the inverse operations of addition, multiplication, and exponentiation. Anyone pro-
ficient in algebra knows how important these operations are in solving equations. As an elementary example, 
we want to solve the following equation for x: 

 3x + 8 = 23 

 Rhetorically, this equation means “3 times a certain number plus 8 is 23.” 
 To solve for x, we first subtract 8 from both members of the equation (subtraction is the inverse of addi-
tion; the “+ 8” in the equation). We get: 

 3x = 15 

 Next, we divide both members of this new equation by 3 (division is the inverse of multiplication; the “3 
times x” in the equation). We get:  

 x = 5 (our solution) 

 To define the inverse operations, we start with three equations and the numbers a, b, and c that satisfy 
them: 

 Equation 1: a + b = c 
 Equation 2: ab = c 
 Equation 3: ba = c (b is the base, and a is called the exponent) 

 We want to solve each of these equations for b. From Equation 1, since a + b = c, then b = c – a. This 
process is the definition of subtraction. We say, “a subtracted from c is b.” 

                                                 
10 Note, 0 + but 0  W. 
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 From Equation 2, since ab = c, then b = 
c
a

. This process is the definition of division. We say, “c divided 

by a is b.” 

 From Equation 3, since ba = c, the b = a c . This process is the definition of extraction of roots. We say, 

“the ath root of c is b.” For example, if 24 = 16, then 2 = 4 16  or “2 is the fourth root of 16.” 
 Note that a + b = b + a and ab = ba (commutative property). Does ba = ab? For example, does 23 = 32? 
Since 23 = 8 and 32 = 9, then we can reasonably conjecture that there is another inverse of exponentiation. 
Given ab = c, we now want to solve this equation for b. We ask, “a raised to what power equals c?” When 
our unknown is an exponent, we are dealing with technicalities of logarithms.11 Logarithms are defined as fol-
lows: If ab = c, then b = logac. Computing logarithms and the extraction of roots are two kinds of solutions 
to the same type of algebraic equation (dealing with exponents). We can now summarize inverse operations: 

Table I 
Operation Inverse 

Addition a + b = c Subtraction b = c – a 
Multiplication ab = c Division 

b = 
c
a

 

Exponentiation ba = c Extraction of roots b = a c  
Exponentiation ab = c Computing logarithms b = logac 

 To this point, we have been only concerned with the properties of operations and their inverses as they 

apply to the positive integers (a, b, c   or +). It is the inverse operations require us to both extend our 
notion of number and to generalize the Consequences. 

Extension #1 
 In the operation of subtraction (b = c – a), we can 
let c and a be any positive integer. If c > a (> stands 
for “greater than”), then b, the difference, will be 
positive (b > 0). If c = a, then b = 0. What happens if c 
< a (< stands for “less than”)? For example, compute 
b if c = 8 and a = 11; i.e., b = 8 – 11. Or, in terms of 
addition, 11 + b = 8. What number, when added to 
11, equals 8? There is no such number if we confine 
ourselves to the set of natural numbers or positive in-
tegers. The operation of subtraction requires us to ex-
tend the set of positive integers to include, not only 0 
but the negative integers (If c < a, then b < 0). In our ex-

ample, -3 = 8 – 11. The set of integers,  (Figure 1: 

Set of Integers and Figure 2: Extension #1), consists of the negative integers (-), 0, and the positive inte-

gers (+) or  = -  0  +. 

                                                 
11 Logarithm literally means “the study of number” (logos + arithmos). 

 
Figure 1: Set of Integers 
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 Integers allow use to solve equations like x + 5 = -3. Subtracting 5 from both members of these equa-
tion, we get x = -8. 

 We can also generalize the Consequences in that they hold true for  and we can 
also use the Consequences to form the rules for adding, subtraction, multiplying, and 
dividing any integer (whether both positive, both negative, or a combination of 
positive and negative). 
 By extending our number system to include negative integers, we do run into 
some conceptual issues. For example, we stated that multiplication is repeated addition 
by the same number or, in symbols: 

timesb

ba a a a a      

(-2)3 makes no conceptual sense with this definition. How can you multiply 3 
by itself “negative 2” times? Even though we experience conceptual failure, we can 
work around this and the rules still unfold. We can establish that (-2)3 = -6. 

Extension #2 

In the operation of division (b = 
c
a

 and b is the quotient), we can let c and a be any integer . This 

operation works if c is divisible by a. If not, we encounter 

remainders. Remainders require us to extend  to include frac-

tions.12 For example, if c = 1 and a = 3, then b = 
1

3
. If c = -8 and a 

= 5, then b = 
-8 3

-1
5 5
 . 

The set of fractions or rational numbers “fill out” the proverbial 
number line (technically, they make the number line everywhere 
dense).13 Rational numbers are ratio numbers. We define them as 

follows: We can write a rational number in the form 
a

b
 where a, b 

  and b  0. The symbol for the set of rational numbers is  

(Figure 3: Extension #2).14 We can write any number in  in a 

rational number “dress.” For example, 
2

2
1

  and 
-10

-5
2

 . 

                                                 
12 Fraction literally means “to break.” 
13 By everywhere dense, we mean that between any two rational numbers, you can always find another rational number. You can 
compute this number by computing the average of the two given rational numbers. 
14 The letter  stands for “quotient.” 

 
Figure 2: Extension #1 

 
Figure 3: Extension #2 
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 Rational numbers allow use to solve equations like 3x + 5 = -3. Subtracting 5 from both sides of this 

equation, we get 3x = -8. Dividing both members of this equation by 3, we get x = 
8 2

- -2
3 3
 . 

 Exponentiation and its two inverses engender some intriguing consequences and Feynman carefully exe-
getes these wonders. Given ba, what happens when a is negative? For example, let’s consider b3-8. What does 
this mean? We know that 3 – 8 = -5 and we know this: 

 (3 – 8) + 8 = 3 

 From this, we get 3 8 8 3b b b   from our ninth consequence. Therefore, by our definition of division, 

3
3 8

8

b
b

b
  . Since b3 = bbb and b8 = bbbbbbb b, then 3 8 b b b

b   


1

b b b b b b b b       5

1

1
b

 . Since 3 – 8 = -5, 

then 3 8 -5
5

1
b b

b
   . Hence, negative exponents are reciprocals of positive exponents. In general, - 1a

a
b

b
  

and 
-

1a
a

b
b

 . 

 Let’s consider 
1
ab

 where b   and a  +. If a is an even positive integer (2, 4, 6, 8, etc.), then ba will 

always be positive and 
1
ab

 will be a rational number . For example, 
2

1 1

2 4
  and 

2

1 1
(-2) 4

 . If a is an odd 

positive integer (1, 3, 5, 7, etc.), then ba will be positive if b is positive and ba will be negative if b is negative. 

In both cases, 
1
ab

 will again be a rational number . For example, 
3

1 1

2 8
  and 

3

1 1 1
-

(-2) -8 8
  . 

 Next, let’s consider exponents that are rational numbers. For example, let’s consider 
3
8b . By our defini-

tion of division, we know: 

 
3

8 3
8

   
 

 

 From our eleventh consequence, we get: 
8 33 (8 )

388b b b
 
 
  

  
 

. Also, by our definition of extraction of 

roots, we get this relationship: 
3

3
88b b . With more demonstrations like these, we can conclude that the 

Consequences will hold true for . 
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Extension #3 
 We have already discovered that both subtraction and division requires us to extend our concept of 

number from  to  to . Can we go further? Consider the equation x2 – 2 = 0. What value or values of x 
will make this equation true? Adding 2 (inverse of subtraction) to both members of this equation, we get x2 
= 2. Extracting the square root of both members of 

this equation, we get x = 2  (we are only consider-
ing the positive root of 2). The ancient Greeks en-
countered this number when they considered the 
length of the diagonal of a unit square (Figure 5: 
Square Root of 2). By the Pythagorean Theorem, 
this length, when the sides of the square were 1 unit, 

is 2 . In a stunning display of the power of reductio 

ad absurdum (indirect proof), Greek mathematicians proved that we cannot write 2  as the ratio of two inte-

gers. Hence, 2  is not a rational number. It is a different kind of number. The Greeks denoted this number 

as alogos (without ratio). Today, we denote 2  as an irrational number. Remember when we stated that the 

number line is everywhere dense with rational numbers? 2 , being a positive length, can be represented on the 
number line. Hence, although the number line is everywhere dense with rational numbers, there are gaps. Both 
Richard Dedekind (1831-1916) and Georg Cantor 
(1845-1918), German mathematicians, showed that 
there are an infinite number of gaps in the number line, 
gaps filled with irrational numbers. 

  extends  (i.e.,    or  is contained in )15 

and  extends   (i.e.,    or  is contained in ). 
The set of irrational numbers, denoted as I, does not ex-

tend  (i.e.,   I or  is not contained in I).  and I 

are disjoint sets. Together,  and I compose the set of 

real numbers (Figure 4: Extension #3), denoted as  

(or   I = ). 
 We can write every rational number in decimal 
form were the decimal expansion either repeats or ter-

minates. For example, 
1

0.3
3
  where 3, the repetend, 

repeats ad infinitum. 
1

0.25
4
  where the decimal expan-

sion terminates at 5 (in the hundredths position). The decimal expansion of irrational numbers like 2  nei-
ther repeats nor terminates. Because of this intriguing property, every irrational number can be approxi-
mated by a rational number to any degree of precision required. 

                                                 
15 The symbol , in set theoretical notation, means “is contained in.” 

 
Figure 4: Extension #3 
 

 
Figure 5: Square Root of 2
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 Feynman next considered irrational exponents. Consider the equation x = 210 . We can approximate 

this number by estimating 2  by a rational number. For example, we let 
4 14

2 1.4 1
10 10

   . Therefore, 

14
142 101010 10 10  . We can obtain a better approximation by letting 

41 141
2 1.41 1

100 100
   . Therefore, 

141
1412 10010010 10 10  . We can get better and better estimations but note that by doing so we will be calcu-

lating very large roots (e.g., 1000th root of 10, 10,000th root of 10, 100,000th root of 10, etc.). We get: 

 
1414

14142 1000100010 10 10   

 
14,142

14,14210,0002 10,00010 10 10   

 
141,421

141,421100,0002 100,00010 10 10   

 Our approximations will become harder to compute (without the aid of calculators, of course, a tool 
that Feynman did not have access to in the early 1960s when he first delivered his lectures on physics at Cal 
Tech).16 

 Remember that there are two inverses of exponentiation. We can solve the equation x = 210  by extrac-
tion of roots (to any degree of precision we desire), and we can solve the equation 10x = 2 by computing 
logarithms. By definition, 10x = 2  x = log10 2. Hence, we just need to compute the logarithm to the base 
10 of 2. How do we do this? 

 Feynman proceeded to explore the general “ideational mode of attack.” If we can calculate 110 , 
4
1010 , 

1
10010 , 

4
100010 , etc. and multiply them together, we would get: 

 
4 1 4 4 1 4

11 1.414 210 100 1000 10 100 100010 10 10 10 10 10 10x
  

        

 To do this, we must be able to calculate 
1

101010 10 , 
1

10010010 10 , 
1

1000100010 10 , etc. Before the in-
vention of calculators, these computations were tediously difficult. However, thanks to the ancient Babylo-
nians and Isaac Newton (1642-1727), there exists a recursive algorithm whereby it is relatively easy (you 
have to do the computations though) to calculate the square root of any number to a remarkable degree of 

accuracy.17 Let’s say that you want to find n . We base the algorithm upon an initial guess, g. We take the 

average of that guess, g, and the quotient of 
n
g

. Calculating this average gives us an even better approxima-

tion. We can then use this approximation as the next guess, and the average is again taken (this is why this 
algorithm is recursive: its output becomes the input for the next calculation). In symbols, this algorithm 
works like this: 

                                                 
16 Logarithmic tables, the staple of the appendices to math and science textbooks until the late 1980s, assisted a human “com-
puter” with these calculations. 
17 Technically, this algorithm converges very rapidly to the number sought. 
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 Given n, we want to compute n . Assume n g . 

 Step 1. We compute a better approximation, a, where 
2

n
g

g
a


 . 

 Step 2. Let g = a. 
 Go to Step 1 or halt the algorithm when a reaches the precision desired. 
   

 For example, we consider computing 2 . We estimate 2 1.4 . Hence, g = 1.4. 

 Step 1. 

2
1.4

1.4 1.414286
2

a


   (rounded). 

 Step 2. g = a = 1.414286  
 We repeat: 

 Step 1. 

2
1.414286

1.414286 1.414214
2

a


  (rounded), the actual value of 2  rounded to the nearest 

millionth. We can now halt this remarkably accurate process. 

 With this algorithm in mind, instead of calculating 
1

101010 10 , 
1

10010010 10 , 
1

1000100010 10 , etc. we 

can calculate  
1
210 10 , 

1
1 1 2
4 210 10 10

 
  
 

, 

1
1 2

1 1 2
8 210 10 10

 
       
 

, etc. Before we perform 

these calculations, we need to ask why we are doing this work with 10 instead of another number. 
 As background, logarithms were invented in the 17th century to ease computations (primarily multiplica-
tion and division) of large numbers.18 From our ninth consequence, we know that abac = ab + c. We also know 
that ab = c  b = logac. What happens when we take the logarithm of the product of two numbers? 

 We let ab = x and ac = y and we want to find loga(xy). We reason as follows: 
Since ab = x, then, by definition, b = logax 
Since ac = y, then, by definition, c = logay 
Since xy = abac = ab + c, then ab + c = xy 
Hence, by definition, b + c = loga(xy) 

Since b = logax and c = logay, then, by substitution, loga(xy) = logax + logay 

What we have demonstrated is that a multiplication problem can be translated, by use of logarithms, into 
an addition problem.19 This relationship, this law-order, holds for any base a. 

The question now focuses on the choice of a base. Let’s say that we can determine the logarithms for a 
given base a; i.e., we can solve the equation ab = c for any c or we can compute logac = b for all values of c. 

Let’s say that we want to calculate the logarithm of c to another base, base x. We need to solve xb = c or 
compute logxc = b (note, because of the different base, b  b). Since b  b, then b must be a factor of b. 

                                                 
18 17th century problems in astronomy generated big number type problems. 
19 Likewise, a division problem can be translated, by use of logarithms, into a subtraction problem. 
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Let’s let that factor be t. Hence, tb = b. Since tb = b, then t = 
b
b

 or b = 
b
t

. Now we let x = at. Since we 

know a and x, then we can find t. Since x = at, then logax = t. Next, note that (at)b = atb = ab = c. Hence, 

logac = tb and logxc = b = 
b
t

. This means that the logarithm of any number c to the base x is equal to 
b
t

 or 

1
t

, a constant, multiplied by b = logac. Therefore any logarithmic table, in base a, is equivalent to any other logarithmic 

table, in base x, if we multiply each logarithm by a constant. That constant is 
1 1

log at x
 . This analysis allows us to 

choose any particular base and then we can easily translate the logarithms so calculated into another base. 
For convenience and by historical precedence, we start with base 10, the base of the decimal number 

system. Starting from base 10, as the English mathematician Henry Briggs (1561-1630) originally did, we can 
calculate the logarithms of any number as long as we can calculate square roots. As a result of these calcula-
tions, we shall encounter another base that will make things more elegant and become the “base” for a mul-
titude of stunning mathematical connections. 
 We can compute logarithms by computing, using the Babylonian algorithm, successive square roots of 

10: 
1
210 10 , 

1
1 1 2
4 210 10 10

 
  
 

, 

1
1 2

1 1 2
8 210 10 10

 
       
 

, etc. Here is a table of our results, ten 

successive square roots of 10, calculated to the nearest ten-millionths: 

Table IIA 
Exponent: k 10k 

1 10.0000000
1

2

3.1622777

1

4

1.7782794

1

8

1.3335214

1

16

1.1547820

1

32

1.0746078

1

64

1.0366329

1

128

1.0181517

1

256

1.0090350
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Table IIA 
Exponent: k 10k 

1

512

1.0045073

1

1024

1.0022511

 What can we conclude from these calculations? Since we know that 
1
210 3.1622777 , then 

log103.1622777 = 0.5 (this answer is very accurate). We also know that since 
1
410 1.7782794 , then 

log101.7782794 = 0.25. 

 Can we use this table to find 
3
410 ? First, we note: 

1 13 11
2 44 4210 10 10 10

  
 

  
    

  
 (our ninth consequence 

again). Second, since we want to find 
3

410 , we let 
1 1
2 410 x

  
   . Since 

1 1
2 410 x

  
   , then 

10

1 1 3
log

2 4 4
x     

 
. We have already established that loga(xy) = logax + logay. Since log103.162277 = 0.5 

and log101.7782794 = 0.25, then log10(3.162277  1.7782794) = 0.5 + 0.25 = 0.75 = 
3

4
. Since 

log10(3.1622777  1.7782794) = 
3

4
, then 

3

410  = 3.1622777  1.7782794 = 5.6234133. 

 Based on this example, if we can get enough numbers in column one of Table 1 to make up almost any 
number, then, by multiplying the proper numbers in column two, we can compute 10a for any a. If we keep 

extending the table; i.e., find 10k when k =
1

2048
, 

1

4096
, 

1

8192
, etc., we should first note something. 10k for 

a very small k generates a number slightly greater than 1. We get 1 plus a very small amount (let’s denote 
this amount using the Greek letter delta, ). 

 Take some time to study Table IIA and see if you can discover a pattern. It looks like each decimal part 
in column two, as k gets very small, is very close to half the preceding decimal number part. For example, 
rounding, we note that: 

  
0.036

0.018
2

  

  
0.018

0.009
2

  

  
0.0090

0.0045
2

  

 
0.00450

0.00225
2

  

 The next entry, 
1

204810 , should be: 



Algebra and Number Systems: 
A Stunning Connection of Mathematical Glory 

by James D. Nickel, BA, Bth, BMiss, MA 

Copyright © 2007, 2016 by James D. Nickel 
www.biblicalchristianworldview.net 

12 

 
1

2048 0.0022511
10 1 1.00112555

2
    

 We learn from this type of thinking that instead of calculating these square roots, we can estimate them. 
Furthermore, we can guess the ultimate limit or threshold of these roots. In other words, if we compute 

1024


 and let  get very, very small (  0), what will be the answer? It will be a number very close to 

0.0022511, but not exactly. We can get a better value of this number by correcting this estimate. We do 
this by performing an adjusted calculation. We subtract the 1 from 10k and then divide by k; i.e., we calcu-

late 
10 1k

k


. Let’s do that now and add four columns to Table IIA, column two, four, five and six generat-

ing the six-column Table IIB: 

Table IIB 
 

Exponent: k 
 

1024k 
 

10k 
 

  10k  

(4 places, 
decimal part)

10 1k

k


 
10 1k

k
 
 
 

 

(4 places, 
decimal part)

1 1024 10.0000000 9.0000 
1

2
 

512 3.1622777 4.3246 

1

4
 

256 1.7782794 3.1131 

1

8
 

128 1.3335214 2.6682 

1

16
 

64 1.1547820 1787 2.4765 1917

1

32
 

32 1.0746078 802 2.3874 891

1

64
 

16 1.0366329 380 2.3445 429

1

128
 

8 1.0181517 184 2.3234 211

1

256
 

4 1.0090350 91 2.3130 104

1

512
 

2 1.0045073 45 2.3077 53

1

1024
 

1 1.0022511 23 2.3051 26

   26
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Table IIB 
 

Exponent: k 
 

1024k 
 

10k 
 

  10k  

(4 places, 
decimal part)

10 1k

k


 
10 1k

k
 
 
 

 

(4 places, 
decimal part)

1024


 

as   0  

 1 + 0.002248585
(correct

limiting value)

 2.3025 
(correct 

limiting value 
is 2.302585)  

 

 Note that with our calculation adjustment, the column six differences are very close to the column four 
differences, especially as k gets smaller. The division by 2 pattern with the decimal part difference also 
holds. What is the limiting value of column five? As we keep extending the rows in this table, as k gets 
smaller, the differences in column six become 13, 7, 3, 2, and 1 or 13 + 7 + 3 + 2 + 1 = 26. Subracting 
0.0026 from 2.3051 gives us 2.3025 as our approximate limiting value, to four decimal places. The actual 

limiting value20 of 
10 1k

k


 as k  0 is 2.302585  2.3026. Using the limit notation: 

 
0

10 1
lim 2.302585

k

k k

 
 

 
 

 Since the actual difference is 0.000002515, we subtract 0.000002515 from the decimal part of 1.0022511 
in column three and we get: 

 0.0022511 – 0.000002515 = 0.002248585 

 Therefore, our limiting value for our third column, 10k, is 1 + 0.002248585. Using limit notation:  

 1024

0
0.002248585lim 10 1





 
   

 
 

 For example, if we let 
1

1, 000, 000
  , then: 

  

1
1,000,000

1024 0.002248585
1

10 1 1.000000002
1,000,000
    
 

 

 This answer can also be calculated using the formula 1 2.302585
1024
   

 
 because: 

 
2.302585

0.0022486
1024

 (0.002248585 rounded to the nearest ten-millionth) 

                                                 
20 We have to transcend arithmetic to find this value and calculus methods do the job. 
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 Based on this analysis, let’s calculate a logarithm. We are going to follow the reasoning and calculation 
process used by Briggs over three centuries ago (1620). Our task is to compute the logarithm of 2 or to find 
x in the equation log102 = x. Or, we find x such that 10x = 2. We know that log101.7782794 = 0.25 and 

log103.1622777 = 0.5. Hence, 
1

4
 < log102 < 

1

2
. We now have a window with which to work. 

Iteration #1 

 Since log 1.7782794 = 0.25 
1
410  = 1.7782794, we know that 

1
410 , being less than 2, will be a factor of 

2; i.e., 2  
1
410   1.7782794. We proceed to factor 

1
410  from 2 as follows (Remember, 10x = 2): 

 
1
4

1
4

10 2
10 1.124682

1.7782794
10

x x
    

 We have taken a quarter (
1

0.25
4
 ) away from the logarithm. 1.124682 is now the number whose loga-

rithm we need. 

Iteration #2 

 We look to the table to find the next number that is less than 1.124682 and it is 1.0746078 = 
1

3210 . We 

conclude that 1.0746078 is another factor of 2, the second factor; i.e., 2  
1 1
4 3210 10   

(1.7782794)(1.0746078). We proceed to factor this number, 
1

3210 , from 1.124682 as follows: 

 

1
1 11 14
4 324 32

1
32

10 1.124682
10 10 1.046598

1.0746078
10

x
xx

      
      

 We have taken 
1

0.03125
32

  away from the logarithm. 1.046598  is now the number whose logarithm 

we need. 

Iteration #3 

 We again look to the table to find the next number that is less than 1.046598 and it is 1.0366329 =
1

6410 . 

We conclude that 1.0366329 is the third factor of 2; i.e., 2  
1 1 1
4 32 6410 10 10    

(1.7782794)(1.0746078)(1.0366329). As before, we factor this number, 
1

6410 , from 1.046598  as follows: 

 

1 1
1 1 11 1 14 32
4 32 644 32 64

1
64

10 1.046598
10 10 1.009613

1.0366329
10

x
xx

             
      
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 We have taken 
1

0.015625
64

  away from the logarithm which means we are getting closer. 1.009613  is 

now the number whose logarithm we need. 

Iteration #4 

 We again look to the table to find the next number that is less than 1.009613  and it is 1.0090350 =
1

25610

. We conclude that 1.0090350 is the fourth factor of 2; i.e., 2  
1 1 1 1
4 32 64 25610 10 10 10     

(1.7782794)(1.0746078)(1.0366329)(1.0090350). We factor this number, 
1

25610 , from 1.009613  as follows: 

 

1 1 1
1 1 1 11 1 1 14 32 64
4 32 64 2564 32 64 256

1
256

10 1.009613
10 10 1.000573

1.0090350
10

x
xx

                
      

 We have taken 
1

0.00390625
256

  away from the logarithm. 1.000573  is now the number whose loga-

rithm we need. 

Iteration #5 
 We look to the table to find the next number that is less than 1.000573 , but this number is beyond the 

calculated limits of our table, i.e., 
1

102410 1.0022511
 

 
 

. To calculate this factor, we use our result, 

102410 1 2.302585
1024

     
 

. We know that 1.000573 1 2.302585
1024
    

 
. Solving for , we get: 

 1.000573 1 2.302585
1024
    

 
1.000573 1 2.302585

1024
    

 
  0.000573 1024 2.302585 

 

 
   0.000573 1024

0.255
2.302585

    

 We now have our final factor; i.e., 2  
1 1 1 1 0.255
4 32 64 256 102410 10 10 10 10      

(1.7782794)(1.0746078)(1.0366329)(1.0090350)(1.000573) 

The log of 2 

 We again note that 1.7782794 = 
1
410 , 1.0746078 = 

1
3210 , 1.0366329 = 

1
6410 , 1.0090350 = 

1
25610 , and 

1.000573 = 
0.255
102410 . We add the exponents back to find x. 

 Therefore, we can estimate 10x = 2 as: 
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1 1 1 1 0.255 1 1 1 1 0.255

0.301034 32 64 256 1024 4 32 64 256 102410 10 10 10 10 10 10 10 2x         
        
     

 

 Hence, log102  0.30103 (this answer is accurate to five decimal places). 
 Calculating this way, it took Mr. Briggs many, many years working with pencil and paper (before calcula-
tors and computers) to generate the logarithmic tables that used to grace the appendices in science and math 
textbooks. According to Feynman, Mr. Briggs was reported to have said, “I computed successively 54 
square roots of 10.”21 If the above calculations tired you as they did me, then hats off to Mr. Briggs! He cal-
culated 27 successive square roots of 10 and used the  formula to calculate the other 27. He also calculated 
his answers to 16 decimal places, rounding off to 
14 in his published tables. Today, logarithmic ta-
bles are computed using expansions of series.22 

The base of the Natural loga-
rithms 
 Before we end this excursion in tedious 
computation of logarithms, we need to espe-
cially note that for small exponents k (or, as k 
 0), we can easily calculate 10k by using the 
fact that 10k = 1 + 2.302585k. We can state this 
relationship in another way. We also note that 

2.30258510 1
n

n   as n  0. Why? We know that 

k = 
1024


. Therefore, 10k = 1 + 2.302585

1024

 
 
 

. If we let n = 2.302585
1024

 
 
 

, then 

2.302585
1024

 
 
 

 = 2.302585k = n. Therefore, 

k = 
2.302585

n
. We can, therefore, conclude, by 

substitution, 2.30258510 1
n

n  . 
 Before, we noted that logarithms to any 
other base are simply multiples of logarithms to 
the base 10. We chose base 10 because it is con-
venient (we use a base 10 decimal system) and, for this reason, Briggs starting with this base. Is there a way 

in which we can change the scale of our logarithms to a naturally mathematical one? Since 2.30258510 1
n

n  , 
we can proceed to multiply all the logarithms to the base 10 by 2.302585. Our answers will correspond to 

                                                 
21 Feynman, I:22-6. 
22 A series is the sum of a patterned sequence of numbers. 

 
Henry Briggs' 1617 Logarithmorum Chilias Prima showing the base-
10 logarithm of the integers 0 to 67 to fourteen decimal places. 
log 2 = 0.30102999566398. Source: Public Domain  
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another base, our mathematically natural base. We let the letter e be this base. Note that 2.30258510 1
n

n    

 10 2.30258
l

5
og 1

n
n  . Multiplying both sides of this equation by 2.302585, we get 

 10( ) log2.302585 1 n n  . Since 10 e( ) l2.302585 og log  (our “natural” definition), then 

   10( ) log 12. log 1302585 en n n      1ne n   as n  0. 

 Note that this expression, 1ne n   as n  0, is very clean and efficient. It is a “natural.” Compare it 

with the somewhat cumbersome 2.302610 1
n

n  . 

 What is the value of e that generates this efficiency? We know that 1ne n   and 2.30258510 1
n

n  . 

Hence, 2.30258510
n

ne  . Letting n = 1, then e1 = e = 2.3
1

0258510 . Hence, 
1

0.434292.302610 10  . Since 

0
2.3025

10 1
l m 85i

k

k k

 
 

 
, then the exponent of 10, 0.43429 …, is indeed an irrational number. We can now 

invoke our table to approximate this irrational number. We must solve this equation for e: 0.4342910 e . 
Without going into the detail of the calculations (the reader can do the computation), we can estimate e, 
rounded to four decimal places, as follows: 

e = (1.7782794)(1.3335214)(1.0746078)(1.0366329)(1.0181517)(1.0090350)(1.001643)  2.7184 (Note: 23) 

 As previously hinted, e is a stunning number. It is the base of the natural logarithms. Calculated from our 
table of successive square roots of 10, it is a number that ties together a host of mathematical propositions. 
These connections are so unbelievable that some mathematicians have denoted e as miraculous. Mathemati-
cian Eli Maor has written a 215-page book exploring some of these connections. It is entitled e: The Story of a 
Number (Princeton University Press, 1994). In the final four pages of his exposition, Feynman will proceed 
to unearth this jewel in a way calculated to stun and awe the beholder. 

Extension #4 
 Let’s retrace the steps we have taken through number systems. We started with the set of natural num-

bers,  or +. To solve simple algebraic equations, we saw the need to extend this set by adding 0 and the 

opposites, or negative integers, -. +, 0, and - comprise the set of integers, . Fractions, required to 

solve certain algebraic equations, extend  to . Finally, we studied irrational numbers, I, a set of numbers 

disjoint from . The set of rational numbers and the set of irrational numbers, taken together or joined, 

generate the set of real numbers, . 
 We have one final extension to make. We saw that irrational numbers were necessary to solve an equa-
tion like x2 – 2 = 0. Consider the seemingly harmless equation x2 + 1 = 0. What value or values of x make 
this equation true? To solve, we subtract 1 from both members of the equation. We get x2 = -1. Next, we 

extract the square root from both members of the equation. We get x = -1 . This “solution” leaves us in a 

                                                 
23 The actual value of e, to ten decimal places, is 2.7182818284. 
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quandary. To find -1 , we must find a number, when multiplied by itself, equals -1. There is no such num-

ber, at least in the set . This dilemma requires us to extend  to include numbers some of which, when 
multiplied by themselves, generate a product that is a negative number. 

We start this number system by letting the letter i stand for a number that satisfies the condition i2 = -1 

or i = -1 . This letter i stands for the unit or pure imaginary number. Note that if the square of i is i2, then the 
square of -i is also i2. Why? (-i)(-i) = i2. Because of this property, -i is called the complex conjugate of i.24 Hence, 
in the imaginary realm, there are two solutions to the equation x2 + 1 = 0; they are i and -i. 
 Men from three different countries, the 
German mathematician Carl Friedrich Gauss 
(1777-1855), the Norwegian surveyor Caspar 
Wessel (1745-1818), and the French amateur 
mathematician/bookstore manager Jean Robert 
Argand (1768-1822), suggested an amazing way 
to represent imaginary numbers. Since the time 
of René Descartes (1596-1650), mathematicians 
used coordinate systems to picture equations in 
two unknowns. Every high school student 
learns this system with its x-axis, y-axis, origin, 
ordered pairs, and four quadrants. Analytical ge-
ometry provides a way to visualize solutions to 
algebraic equations. Gauss used coordinate ge-
ometry as a way to visualize imaginary numbers 
(Figure 6: Complex number plane). He let the 

x-axis (the horizontal axis) represent . It was simply a 
representation of our famous number line, the union of 
rational and irrational numbers. He then let the y-axis 
(the vertical axis) represent positive and negative imagi-
nary numbers (with i as the imaginary unit). Hence, 
every point on this grid of four quadrants represents a 
“number” consisting of a real number part and an imag-
inary number part. Numbers like this, numbers in the 

form a + bi where a, b   are called complex numbers 

 (Figure 7: Extension #4). Hence, every real number 

 is a complex number where b = 0. For example, 2  

can be written in a complex number dress, 2  + 0i 

                                                 
24 Conjugate, in Latin, means “to yoke together.” 

 
Figure 7: Extension #4 

 
Figure 6: Complex number plane 
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where a = 2  and b = 0. Because of this designation, the set of real numbers  are contained in the set of 

complex numbers  (  ). 
 There is an arithmetic to complex numbers that is fascinating. For example, adding two complex num-
bers is just a matter of adding their corresponding real number parts and their corresponding imaginary 
number parts. In general, (a + bi) + (c + di) = (a + c) + (b + d)i. For example (Figure 8: Vector Addition), (3 
+ 4i) + (2 – 8i) = (5 – 4i). 

Scientists, upon seeing the graphical representation of the addition of complex numbers, immediately 
understood the complex number sum as representing the result-
ant vector of two independent forces (based upon Isaac New-
ton’s parallelogram law of addition of forces). 

Likewise, for subtraction, (a + bi) – (c + di) = (a – c) + (b – 
d)i. Multiplying two complex numbers works out like this: 

 (a + bi)(c + di) = ac + adi + bci +bdi2 = ac + i(ad + bc) + bdi2 

 Since, by definition, i2 = -1, then ac + i(ad + bc) + bdi2 = ac + 
i(ad + bc) – bd = (ac – bd) + i(ad + bc) 

 Successive powers of i are denoted in this table: 

Table III 
i = -1

i2 = ( -1 )( -1 ) = -1

i3 = ( -1 )( -1 )( -1 ) = -1(i)= -i

i4 = ( -1 )( -1 )( -1 )( -1 ) = (-1)(-1) 1

Any larger power of i can be reduced to one of these basic four. For example: 

 i5 = i4+1 = i4i1 = (1)( -1 ) =( -1 ) = i 
 i15= i4 + 4 + 4 + 3 = i4i4i4i3 = (1)(1)(1)(-i) = -i 

 We can now complete the table of the powers of i. Note especially the “cycling” or “periodic” nature of 
this table. This observation will come in handy later. 

Table IV 
i  = -1
i 2 = -1
i 3 = - i
i 4 = +1
i 5 = i
i 6 = -1
i 7 = - i
i 8 = +1
i 9 = i
i 10 = -1
i 11 = - i

 
Figure 8: Vector Addition 
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i 12 = +1
i 13 = i
i 14 = -1
i 15 = - i

Let’s see what (-3i)2 and +(3i)2 equal: 

+(3i)2 = (3i)(3i) = 9i 2 = 9(-1) = -9 
(-3i)2 = (-3i)(-3i) = 9i 2 = 9(-1) = -9 

The complex conjugate of a + bi is a – bi. The complex conjugate of bi is -bi. If we multiply a complex 
number by its conjugate, we get: 

(a + bi)(a – bi) = a2 – b2i2 = a2 – b2(-1) = a2 + b2 (the imaginary part disappears) 
(bi)(-bi) = (b)(-b)i2 = (b)(-b)(-1) = (b)(b) = b2 (again, the imaginary part disappears) 

In 1799, at the age of 22, Gauss showed, by a proof that is beautiful, elegant, but not at all intuitive, that 

with this extension of  to , every algebraic equation can be solved. Technically, this proof, the Fundamental 
Theorem of Algebra, states that a polynomial25 of degree n has exactly n complex solutions (or roots). Also, 

the Consequences hold true for . With , there is no need to extend the number systems any further. For ex-

ample, i  is not a “new” number. ii is not a new number.  is sufficient for the solution of every polynomial 

equation; i.e.,  encapsulates everything we need to have to solve any equation written algebraically, i.e., an 
equation written in terms of a finite number of algebraic symbols. 

Operations with complex numbers introduce us into some fascinating realms. Journeying through this 
dominion is like investigating the visual wonders of Carlsbad Caverns. In the final words of his exposition, 
Feynman crawls through a small opening in this vast cave and excavates the intriguing treasure unearthed by 
computing complex powers of complex numbers. 
 Let’s start by simplifying the situation. Instead of trying to compute complex powers of complex num-
bers, let’s compute complex powers of real numbers. We shall consider 10a + bi. By our ninth consequence, 

10a + bi = 10a10bi. We already know how to compute 10a for any a  . We also know how to multiply some-
thing by something else. So, all we need to do is figure out how to compute 10bi. Since we are raising a real 
number to an imaginary power, we can reasonably conclude that our answer will be a complex number. We 
let this answer be x + yi. Hence, we get: 

10bi = x + yi 

 If this is true, then we can write an equation that is true for its respective conjugates. The conjugate of bi 
is -bi and the conjugate of x + yi is x – yi. We get: 

10-bi = x – yi 

 Now, we multiply 10bi by 10-bi. We get: 

(10bi)(10-bi) = 100 = 1 = (x + yi)(x – yi) = x2 + y2 

                                                 
25 A general polynomial equation of degree n is of the form 1 2

1 2 1 0( ) n n
n ny p x a x a x a x a x a

        where an is the co-
efficient of xn, an-1 is the coefficient of xn-1, etc., down to a0, which is the coefficient of x0 (or 1). 
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 Thus, 1 = x2 + y2, meaning that if we can find x, then we can find y. Since y2 = 1 – x2, then 21y x  . 
 We now ask ourselves, “How do we compute 10 to an imaginary exponent?” “How do we compute 10bi 
for a particular value of b?” Feynman guides us along narrow walls of this cave by supposing that if we can 

compute it for any particular b, then we can compute it for everything else, b2, 2b, 3b, b , etc. Feynman 
now invokes a result from our work with logarithms. We know that 10k = 1 + 2.3026k as k  0 when k  

. Feynman takes a leap of intuition and says, in effect, “Let’s assume this equation works for k   and let’s 

see what happens.” Hence, if k  , then k = bi. Hence, 10bi = 1 + 2.3026(bi) as b  0. By smallness, let’s 
let b be a very small part of 1024. 
 With this preliminary work behind us, we can compute all the imaginary powers of 10; i.e., we can com-

pute x and y. Let’s start with by letting b = 
1

1024
. We get: 

1024 1
10 1.00000 2.3026

1024

i

i     
 

 

or 

102410 1.00000 0.0022486
i

i   

 Note that in our calculations we are going to limit our precision to five significant figures in the decimal 

part. If we multiply 102410
i

 by 102410
i

, we get: 1024 1024 1024 1024 51210 10 10 10
i i i i i

  
   

  
. 

 What is 51210
i

? We multiply 1.00000 0.0022486i  by 1.00000 0.0022486i . We get: 

   1.00000 0.0022486 1.00000 0.0022486

1.00000 0.0044972 0.00000505 1.00000 0.00450

i i

i i

  

   
 

 51210
i

 = 1.00000 + 0.00450i (to five significant figures in the decimal part). We continue this squaring 

process, 
2

512 25610 10
i i 

 
 

 and, by doing so, we generate Table V. 

Table V 
Successive squares of 

102410 10 1.00000 0.0022486
i

bi i  
Exponent: bi 1024b 10bi = x + yi 

1024
i

 
1 1.00000 + 0.00225i (rounded) 

512
i

 
2 1.00000 + 0.00450i 

256
i

 
4 0.99996 + 0.00900i 
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Table V 
Successive squares of 

102410 10 1.00000 0.0022486
i

bi i  
Exponent: bi 1024b 10bi = x + yi 

128
i

 
8 0.99984 + 0.01800i 

64
i

 
16 0.99936 + 0.03599i 

32
i

 
32 0.99742 + 0.07193i 

16
i

 
64 0.98967 + 0.14349i 

8
i

 
128 0.95885 + 0.28402i 

4
i

 
256 0.83872 + 0.54467i 

2
i

 
512 0.40679 + 0.91365i 

1
i

 
1024 -0.66928 + 0.74332i 

 Inspect the table for a few minutes and draw some conclusions. In column 3, we have a representation 
of x + yi. Notice that x starts as positive and then moves to negative. What significance is this? We shall see 
in a moment. Note that for each x-value and y-value in column 3, x2 + y2  1. If we did not invoke rounding 
or if we carried our precision to more decimal places, we would discover that, indeed, x2 + y2 = 1. Hence, 
Feynman’s intuitive leap is paying off. For what number b is the real number part of 10bi equal to 0? The y-
term would be i so we would have 10bi = i  bi = log10i. Just as we calculated log102 using Table IIB, we can 
calculate log10i using Table V. Without going into the detail, log10i = 0.68226i  0.6822610 i i .26 
 In Table V, we squared the exponents each time. What happens if we let the exponents increase arith-
metically? By doing this, we will get a closer look at what is happening with the minus signs. So, in the next 

table, we are going to explore what happens to 
i
810  as we increase the exponents arithmetically. 

  
Table VI 

Successive powers of 810
i

 
m = exponent  8i

810
im

 

0 1.00000 + 0.00000i
1 0.95882 + 0.28402i
2 0.83867 + 0.54465i

                                                 
26 You can verify that log10i = 0.68226i using a scientific calculator like TI-83 Plus (by Texas Instruments). 
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Table VI 

Successive powers of 810
i

 
m = exponent  8i

810
im

 

3 0.64944 + 0.76042i
4 0.40672 + 0.91356i
5 0.13050 + 0.99146i
6 -0.15647 + 0.98770i
7 -0.43055 + 0.90260i
8 -0.66917 + 0.74315i
9 -0.85268 + 0.52249i
10 -0.96596 + 0.25880i
11 -0.99969 – 0.02620i
12 -0.95104 – 0.30905i
14 -0.62928 – 0.77717i
16 -0.10447 – 0.99453i
18 0.45454 – 0.89098i
20 0.86648 – 0.49967i
22 0.99884 + 0.05287i
24 0.80890 + 0.58836i

 When m = 0, 
(0)

0810 10 1
i

  . When m = 1, 
(1)
8 810 10

i i

 . These values were calculated in Table V. When 

m = 2, 
(2)
8 410 10

i i

 . Again, these values were calculated in Table V. When m = 3, 
(3) 3
8 810 10

i i

 . We know 

that 
3

4 8 810 10 10
i i i   

   
   

. Hence, 
3
810
i

 = (0.95882 + 0.28402i)(0.83867 + 0.54465i) = 0.64944 + 0.76042i. 

The rest of the table can be filled out using the ninth consequence and values from Table V. 
 What do we notice? We see that x starts from 1, decreases, passes through 0, and continues to -1. Then, 
x starts increasing again, passes through 0, and marches to 1. Regarding y, y starts from 0, increases to 1, 
then decreases, passes through 0, continues to -1, and then increases and passes through 0. Anyone who knows 
anything about trigonometry ought to be stunned by this revelation. This behavior is a description of the attributes of 
the sine function and cosine function (Figure 9: Sine and Cosine functions). 
 Why does 10bi  repeat or oscillate in such a manner? We know that 0.6822610 i i . Then, 

 20.68226 1.36452 210 10 -1i i i   . Next, note that  40.68226 2.72904 2 2 410 10 ( ) 1i i i i    . This analysis should 

confirm the cyclic or periodic behavior of these powers. 
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 Feynman’s next step is a leap into mathematical glory. Instead of using base 10, he translates these val-
ues into the natural base, base e  2.7182818284. We started with 10bi . As before, we let t = 2.3025b (Note: t 

 ) and write 10bi tie . Since 10  bi x yi  , then  tie x yi  . Since x behaves like the cosine of t (since 

t  ) and y behaves like the sine of t (since t  ), we can then write: 

  cos( ) sin( )tie x yi t t i     

 What are the properties of cos(t) and sin(t)? Since x2 + y2 = 1, then cos2(t) + sin2(t) = 1, a property 
usually established by using the Pythagorean Theorem and right triangles, indeed a marvelous connection. We 
also know that as t  0, eti = 1 + ti. Hence, as t  0, cos(t) = 1 and sin(t) = 0. If t = degrees or radians, 
then, by use of right triangles and the unit circle, we can also establish that cos (0) = 1, and sin (0) = 0. 
Hence, as Feynman takes careful note, “all of the various properties of these remarkable functions, which come from 
taking imaginary powers, are the same as the sine and cosine of trigonometry.”27 
 What about the periodicity? Do trigonometric functions and imaginary powers cohere cyclically? To find 
out, we must determine x when ex = i  logei = x. Note, the successive powers of i (i, i 2, i 3, etc.) form the 
x-axis of our graph that pictures what happens to x and y in  tie x yi  . The value of x will give us the pe-
riod from 0 to i. We know that log10i = 0.68226i. Multiplying by the scale factor, 2.3026, we get logei = 
2.3026(log10i) = 2.3026(0.68226i) = 1.5710i. On the horizontal axis, when it measures 1.5710i, then, on the 
vertical axis, the graph will be equal to 1 for y, or sin(t), and 0 for x, or cos(t). Lo and behold, in radians, 

1.5708
2


  (remarkably close to 1.5710). We, therefore, know that sin 1

2

   
 

 and cos 0.
2
   

 
 For the 

                                                 
27 Feynman, I:22-9. 

  
Figure 9: Sine and Cosine functions 
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period from 0 to i2, we must determine x when ex = i2  logei2 = x. By a property of logarithms, we know 
that logei2 = 2 logei. Hence, 2(1.5710i) = 3.142. Look familiar?   3.142. Note also,  sin 0   and 

 cos -1  . Again, these values are a perfect match with our above graph. Wonders of connection multi-
ply! 
 Note carefully, using purely and only by algebra (no triangles, no unit circles), we arrived at natural loga-
rithms and values that are natural to geometry and trigonometry. Hence, we can replace t by , designating 
either radians or degrees, and write what Feynman pronounces as “our jewel.” Indeed, this jewel is stunning 
and exquisite: 

 cos( ) sin( )ie i      

 If  is in radians and we let  = , we know  sin 0   and  cos -1.   Substituting, we get the most 
famous, the most wondrous, the most mysterious equation in all of mathematics: 

 ei = -1  ei + 1 = 0 

Leonhard Euler (1707-1783), Swiss mathematician par excellence, derived the same equation  
cos( ) sin( )ie i      and ei + 1 = 0 from a different mathematical starting point. But that story, and that 

derivation will have to wait for another essay.28   
Feynman concludes his exposition by connecting geometry to algebra by representing a given complex 

number x + yi in a plane. The distance from the origin to the point that represents x + yi is r, called the mod-
ulus (meaning “measure”) or magnitude of x + yi. The phase an-
gle (a physics term), also called the argument or amplitude, of x + 
yi, is . By the Pythagorean Theorem, r2 = x2 + y2  

2 2r x y   and by trigonometry,  tan
y
x

  . 

Also, by trigonometry,    cos cos
x

x r
r

      and 

   sin sin
y

y r
r

     . Since ie x yi   , then, by substi-

tution,        cos sin cos sinix yi e r r i r i            . 

Since cos sinie i     then, by substitution, ix yi re  (Fig-

ure 10: ix yi re  ). This equation, ix yi re  , is, according to Feynman, “the unification of algebra and 
geometry.”29 

                                                 
28 See www.biblicalchristianworldview.net/Mathematical-Circles/eulerCrownJewel.pdf 
29 Feynman, I:22-10. 

 
Figure 10: ix yi re   
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 In conclusion, note that we started this essay only with the notions of the existence of positive integers 
and zero. From this starting point, Feynman defined the procedure of counting.  These ideas and the 
method of counting, assumed by Feynman, can be justified only because of the Triune nature of God. 
Hence, the God of Scripture is the Alpha of mathematics. From counting, we unfolded the basic arithmetic 
operations, their inverses, and the “eleven consequences.” Using algebraic equations and the process of gen-

eralization, we methodically extended number systems from ( or +) and 0 to . Then, we traveled from 

 to . Next stop: I and . Final destination: . 
 Then, we developed useful mathematical ob-
jects like tables of logarithms, powers, and trigo-
nometric functions and discovered the remarka-
ble connection that the sine function and cosine 
function are what the imaginary powers of real numbers 
are. We unearthed this striking correlation, this 
Omega of our thinking (remember, without Alpha 
there cannot be Omega), by reasoning from the con-
struction of a table that merely extracted ten successive 
square roots of ten!  

In his next chapter of Lectures on Physics, 
entitled “Resonance,” Feynman uses this 
“jewel” of an equation, ( ) ( )    cos sinie i , 
to explain and make sense of the physics 
of harmonic motion, forced oscillation and 
damping, electrical resonance, and reso-
nance in the physical creation! 

The Triune God of Scripture is the Alpha 
and Omega of mathematical thinking. 


