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Note: This essay is extracted from 
a Lesson from the forthcoming 
textbook Mathematics: Building 
on Foundations. 

 Irrational numbers (e.g., 2 , 3 , 5 , and π) appear as gaps, indeed many gaps, in our number line of 
everywhere dense rational numbers. This makes sense because two fractions must always be different or else we 
would have no way of telling them apart. No matter how close together we pack the fractions, there must al-
ways be some tiny gap between them. The set of irrational 
numbers effectively fills all these gaps so that we can say, 
“The line is truly filled up.” Mathematicians call the 
union (symbol ∪) of the set of irrational number with 
the set of rational numbers the set of real numbers 
(denoted by ). Using symbols, I ∪  = . Note that  

is not a subset of I. All the elements in  are distinct from the elements in I.  is not contained in I. In sym-

bols,  ⊄ I. 
Mathematicians use the word 

continuum to denote the set of real 
numbers, the union of the set of 
rational numbers with the set of 
irrational numbers.1 This word makes 
sense because the set of real numbers 
“fills the number line” completely (no 
gaps are left). Note these remarks 
about the continuum made by the 
mathematician Tobias Dantzig: 

Indeed, whether we use a ruler or 
a weighing balance, a pressure 
gauge or a thermometer, a 
compass or a voltmeter, we are 
always measuring what appears to 
us to be a continuum, and we are 
measuring it by means of a 
graduated number scale. We are then 
assuming that there exists a 
perfect correspondence between 
the possible states within this 
continuum and the aggregate [set 
– J.N.] of numbers at our disposal; 
… Therefore, any measuring device, however simple and natural it may appear to us, implies the 
whole apparatus of the arithmetic of real numbers: behind any scientific instrument there is the mas-
ter-instrument, arithmetic, without which the special device can neither be used nor even conceived.2 

Based upon Dantzig’s comments, we see that the real numbers, or the continuum, report on the way God 
has made the universe. We construct measuring devices that signify a quantitative state and, in principle, 
these measuring devices, no matter how simple, assume the continuum as their foundation. 

                                                 
1 Continuum comes from a Latin word meaning “continuous.” 
2 Tobias Dantzig, Number: The Language of Science (Garden City: Doubleday Anchor Books, [1930] 1954), pp. 245-246. 
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The real number continuum introduces another important mathematical property called closure. Closure 
is the property that a set of numbers reflects when that set is closed with respect to a particular arithmetic 
operation. For example, the set of natural numbers is closed with respect to the operation of addition. This 
means that the sum of any two natural numbers is always a natural number. A little more reflection will lead 
you to conclude that the set of natural numbers is also closed with respect to multiplication. How would you 
justify this? What about the operation of subtraction? The set of natural numbers is not closed with respect 
to the operation of subtraction (e.g., 3 – 5 is not a natural number). We extend our number system to include 
integers and the set of integers is closed under the operation of subtraction. What about the operation of 
division? We should easily conclude that the set of natural numbers is not closed under division (e.g., 8 ÷ 5 is 
not a natural number). Is the set of integers closed under division? Because the set of integers is not closed 
under division, we extend the set of integers to include the set of rational numbers. The set of real numbers 
(the union of the set of irrational numbers and the set of rational numbers) is closed under the four arith-
metical operations: (1) addition, (2) subtraction, (3) multiplication, and (4) division. In symbols, we state 
these closure properties as follows: 

1. If a, b ∈ , then a + b ∈ . 

2. If a, b ∈ , then a – b ∈ . 

3. If a, b ∈ , then ab ∈ . 

4. If a, b ∈ , then a
b

 ∈  where b ≠ 0. 

In algebraic operation we use properties of equality continuously; in fact, almost subconsciously. These 
properties are based upon the “balance beam” principle; i.e., the operation you perform on one member of 
an equation must also be performed on the other member in order to keep the equation true or “balanced.” 
Let’s formally define these properties. 

1. Reflexive property. This property is derived from the meaning of the equal sign (=). Whenever we see 
this sign, it should tell us that the quantity on the left side (left member) is equal to (or reflects) the 
quantity on the right side (right member) of the equation. For example, y = x2 means that the quan-
tity represented by y reflects (or is equal to) the quantity represented by x2. When you solve an equa-
tion for x, you are incorporating the reflexive property unconsciously. For example, the reflexive 
property guarantees that you can solve an equation like x + 5x + 6 = 18 for x. In symbols, the re-
flexive property of equality states that a = a. Pretty simple, isn’t it? 

2. Symmetric property. This property allows you to exchange the two members of an equation. For ex-
ample, 4x – 7 = 9 – 7x + 15 can be exchanged as follows: 9 – 7x + 15 = 4x – 7.  In symbols, the 
symmetric property of equality states that if a = b, then b = a. Again, this property is intuitively ob-
vious when you understand the principle of equality (the balance beam). 

3. Transitive property (similar to syllogistic reasoning). This property was noted centuries ago by Euclid. 
In his first axiom, he stated, “Things being equal to the same thing are also equal to each other.” We 
also used this property in algebra. For example, given the two equations 5x – 6 = y and y = 3x, we 
can eliminate the common term y and connect the two equations into one; i.e., 5x – 6 = 3x. We 
called this method solving equations by substitution, but we are really using Euclid’s ancient axiom. If 
symbols, the transitive property of equality states that if a = b and b = c, then a = c. 

4. Addition property. This property was also noted by Euclid. In his second axiom, he stated, “If equals 
are added to equals, the wholes are equal.” Again, we use this property many times in algebra. It jus-
tifies the addition (or subtraction) of any number or algebraic term to any equation as long as you add 
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(or subtract) it to both members to keep the equation in balance. For example, given the equation 5x + 4 = 14. 
To solve for x, you can subtract 4 from both sides of the equation and get 5x = 10. In symbols, the 
addition property of equality states if a = b, then a + c = b + c. 

5. Multiplication property. This property is similar to the addition property. It justifies the multiplication 
of both sides of an equation by a non-zero value. For example, given the equation 5x = 10, we di-

vide both sides of the equation by 5 (or multiply by 1
5

) to solve for x; i.e., x = 2. In symbols, the 

multiplication property of equality states that if a = b, then ac = bc when c ≠ 0. 
6. Multiplication property of zero. This property states that the product of any number and zero is zero. In 

symbols, a(0) = 0 and (0)a = 0. 
7. Double negative property. In symbols, -(-a) = a. 

With the properties of closure and equality under our belt, let us now consider irrational numbers as a 
whole. How many are there? Can we count them like we can count rational numbers? That is, are they denu-
merable like the set of rational numbers? So far, we have come across irrational numbers haphazardly. There 
must be a lot of them since the majority of whole numbers are not perfect squares and the square roots of 
these numbers are irrational numbers. 

Maybe the number of rational numbers equals the number of irrational numbers; i.e. they have the same 
cardinality, denoted ℵ0 by the German mathematician Georg Cantor (1845-1918). That fact that Q and I are 
distinct (Q is not a subset of I) ought to make you wonder about that assumption. Let’s return to work of 
Cantor and see how he resolved the question, “Are the irrational numbers denumerable?” 
 Cantor’s method has been hailed as one of the most elegant and ingenious proofs in the history of 
mathematics. First, let’s consider the set of real numbers and let us imagine them all in their decimal expan-
sions. Of these numbers, let us restrict ourselves to the real numbers (both rational and irrational) between 0 
and 1; i.e., to the numbers that begin with 0 in their whole number parts (that means we do not need to 
bother with integral numbers). Cantor showed that even this section of real numbers is “more numerous” 
than all the natural numbers; i.e., you cannot arrange these numbers in a sequence without leaving some real 
numbers out of it. 
 To prove this, Cantor used the reductio ad absurdum approach. He assumed that you can count the real 
numbers between 0 and 1 and then he reasoned to a contradiction. Follow this reasoning carefully. Your 
mind needs to be fully engaged. You may need to remove all distractions so that you can focus. 
 The set of real numbers between 0 and 1 has the form 0.a1a2a3 …, where the digits after the decimal 
point may terminate (as in 0.215), repeat infinitely (as in 0.333 … ), or be infinite but not repeatable (as in 

2 ). Note that by this definition we are including all the rational numbers between 0 and 1. Now, let’s as-
sume that we can establish a one-to-one correspondence between the real numbers between 0 and 1 and the 
natural numbers. If we can show that there is a real number that has not been counted by this method, then 
our assumption is false (the real numbers between 0 and 1 are denumerable) and what we want to prove is 
true (the real numbers between 0 and 1 are not denumerable). 
 We now prepare our arrangement of real numbers. Each real number has a unique decimal expansion 
unless the expansion terminates after a finite number of decimal places. In this case, it may be represented 
by an infinite decimal expansion involving the sequence .999999 … For example, 0.245 = 0.244999999… 
We must also understand the principle known as the fundamental property of decimal expansions: If a number has an 
infinite decimal expansion, no other infinite decimal expansion can represent that number. This property implies that a 
difference in any one digit in two infinite decimal expansions means that the expansions represent two distinct 
numbers. 
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Here is our list (notice, we are not writing any numbers; we are establishing a method of operation by 
this list): 

 Cantor then showed that a decimal lying between 0 and 1 does not appear anywhere on the list. Let’s try to 
understand the logic he used. 

We first consider the number z and the construction of the decimal expansion of z, namely 0.z1z2z3z4… 
Compare z, with our first row; i.e., 0.a1a2a3a4… We now create a method by which we can determine what 
digit to put in tenths position of z; i.e., z1. Our method: if a1 is 0, 1, 2, 3, 4, 5, 6, or 7, then z1= 8. If a1 is 8 or 
9, then z1= 1. z, is now different from the number represented in the first row. 
 Now consider the second row; i.e., 0.b1b2b3b4… We use the same method to determine what digit to put 
in the hundredths position of z; i.e., z2. If b2 is 0, 1, 2, 3, 4, 5, 6, or 7, then z2= 8. If b2 is 8 or 9, then z2= 1. z, 
is now different from the number represented in the second row. 
 Now consider the third row; i.e., 0.c1c2c3c4… Again, by the same method, we determine what digit to put 
in the thousandths position of z; i.e., z3. If c3 is 0, 1, 2, 3, 4, 5, 6, or 7, then z3= 8. If c3 is 8 or 9, then z3= 1. 
z, is now different from the number represented in the third row. 
 We continue this reasoning ad infinitum. The number we have constructed, namely z, lies between 0 and 
1, but is it contained in our enumerated list? It cannot be equal to the number in the first row since, by con-
struction, z1 differs from a1. It cannot be equal to the number in the second row since, by construction, z2 
differs from b2. It cannot be equal to the number in the third row since, by construction, z3 differs from c3. 
And, z cannot be equal to the number in the nth row since, by construction, zn differs from nth digit of the 
decimal in the nth place in the enumeration. 
 By this marvelous piece of logic, Cantor constructed a number not in our list. He therefore reached a 
contradiction and concluded that the real numbers between 0 and 1 are not denumerable. If anyone were to 
try to match the real numbers between 0 and 1 with the natural numbers 1, 2, 3, 4, 5, … by writing them in 
a sequence, a real number would always be left out. In this sense we can say that the real numbers are more numer-
ous than the natural numbers. Cantor denoted the number of real numbers by the letter c, a letter represent-
ing the power of the continuum. 
 Our proof establishes the non-denumerability of both the rational numbers and irrational numbers 
taken together; i.e., the set of real numbers . We already know that the rational numbers are countable 
(they can be written out in the form of a countable sequence).3 Hence, by implication, the irrational numbers 
must not be countable since if these numbers can be written out in the form of a sequence then we can unite 
the two sequences by taking numbers alternatively from each to make a new countable sequence. To illus-
trate this, we can unite the set of positive integers {1, 2, 3, 4,…} with the set of negative integers {-1, -2, -3, 
-4, …} producing a countable set as follows: 
                                                 
3 See the essay Fractions A Plenty on www.biblicalchristianworldview.net/Mathematical-Circles/fractionsAPlenty.pdf 
 

0.     a      a      a      a     a      a      a      a      a      ...1 2 3 4 5 6 7 8 9

0.     b      b      b      b     b      b      b      b      b      ...1 2 3 4 5 6 7 8 9

0.     c      c      c      c      c      c      c       c      c      ...1 2 3 4 5 6 7 8 9

0.     d      d      d      d     d      d      d      d      d      ...1 2 3 4 5 6 7 8 9

0.     e      e      e      e     e      e      e      e      e      ...1 2 3 4 5 6 7 8 9

0.      f       f       f       f      f       f       f       f       f      ...1 2 3 4 5 6 7 8 9

... ... ... ... ... ... ... ... ...0.
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1, -1, 2, -2, 3, -3, 4, -4, … 

If we could construct a countable sequence consisting of union of the set of rational numbers and the set 
of irrational numbers, then we could be able to count the set of real numbers. Cantor proved that you can-
not do this. Therefore the set of irrational numbers cannot be counted; this set is not denumerable. There 
are more irrational numbers than rational numbers on the number line. 

The irrational numbers spread continuously over the entire number line in spite of the fact that the rational 
numbers are everywhere dense! The set of natural numbers, when compared with the set of rational numbers, ap-
pear (on the surface) to be as a few insignificant needles in a haystack infinitely full of straw (since  ⊂ ). 
Yet, we discovered that the number of needles equaled the number of straws of hay; i.e., a one-to-one corre-
spondence exists between these two infinite sets. In other words, the set of natural numbers and the set of 
rational numbers are equally denumerable. From Cantor’s proof explicated in this essay (i.e., the non-
denumerability of the set of irrational numbers), we can now truly picture the set of rational numbers as only 
a few insignificant needles in an infinite haystack of irrational numbers. Ponder that! 
 


