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Note: This essay is extracted from 
a Lesson from the forthcoming 
textbook Mathematics: Building 
on Foundations. 

One of the pleasant memories of childhood is playing “hide and seek” or making up secret codes so that 
only you and your closest friend can communicate in complete privacy. Maybe some of you tried something 
like this with your “secret” pal. You rearranged the alphabet at random, setting each letter of the alphabet to 
some other letter, let’s say, as follows: 

A B C D E F G H I J K L M 
T L P A W J F M Q B X H O 
N O P Q R S T U V W X Y Z 
C K V Z D R Y N G U E I S 

 Only you and your friend have this “key.” Using it, you could change any sentence into unintelligible 
gibberish: 

Want to watch cartoons on Saturday morning? 
 becomes: 

Utcy yk utypm ptdkkcr kc Rtyndati okdcqcf? 
 You might even remove the capital letters, spaces, and punctuation marks to really make it confusing for 
the uninitiated: 

utcyykutypmptdkkcrkcrtyndatiokdcqcf 
 After decoding this message with your key, you reply: 

quqhhrwwiknymwc (I will see you then) 
 In this childhood example is found all the elements of the science of cryptography.1 A cryptographic sys-
tem is classified in three ways: 

1. Some operation (either randomly as in our example or mathematical) is developed through which im-
portant information (text or numbers; also called plain text) can be concealed with the use of an encryption2 
key.  

2. The sender and receiver either use the same key (called a symmetric3 cryptosystem) or different keys (called 
an asymmetric4 [two-key or public-key] cryptosystem). 

3. Using one or the other key system, a message cipher is produced. The sender transmits a key-encrypted 
cipher to the receiver. The receiver decrypts5 the cipher according to the given key and, there you have it, 
the two will watch cartoons on Saturday morning! 

The “uninitiated” who wants to understand the message 
must break the cipher either by obtaining the key (the easy 
way) or by determining the key by mathematical analysis. 
Breaking ciphers by analysis is known as the science of 
cryptanalysis. The simple key devised above is, in fact, easy to 
break. Anyone skilled in cryptanalysis can do this because 
they know the nature and structure of language. Given an encrypted message that is lengthy enough, the law 
of averages set in. For example, in the English language, a random sample6 of prose contains e as the most 
                                                 
1 Cryptography combines two Greek roots, crypto meaning “to hide” and graph meaning “to write.” It literally means “hidden writ-
ing.” It is the science of codes and ciphers. 
2 Encrypt literally means to “hide in” or to put into a cipher. 
3 Symmetric is Greek for “like measure.” 
4 Asymmetric is Greek for “unlike measure.” 
5 Decrypt means the same as “decode or decipher.” You convert the cipher back to its original plain text or number. 
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common letter (12 percent; 12 out of every 100 letters), followed by t (9 percent), a and o (8 percent each), i, 
n, and s (7 percent each), and r (6 percent). The least used letters are j, k, and x (one half of 1 percent; 1 out 
of every 200 letters) and q and z (one-third of 1 percent; 1 out of every 300 letters). Also, combinations of 
letters are more revealing. You can also tabulate the percentage of occurrence of the 26 × 26 (676) different 
possible two-letter combinations in the English alphabet and really narrow the field. Certain letters are never 
doubled in English; e.g., hh, ii, jj, kk, qq, uu, ww, xx, yy. The vowels a, e, i, o, and u appear far more frequently 
adjacent to other letters than they do to one another. The letter n is far more likely to be preceded by a 
vowel than by a consonant. Certain pairs of letters occur frequently in one order but rarely or never in the 
reverse; e.g., ea versus ae, lm verses ml, rn verses nr. As you can tell from the above discussion, a cryptanalyst 
must be skilled in language analysis, logical analysis, and mathematical analysis. It is a challenging vocation. 

 Civil governments throughout history have recognized the need to keep “state secrets,” especially in 
time of war. During war, the ability of one nation to break the code of another nation produces critical and 
strategic pieces of intelligence. For example, in World War II the ability of American cryptanalysts to break 
the Japanese naval code JN25 was pivotal to the American victory over a superior Japanese fleet at the battle 
of Midway (June 3-6, 1942). Later in the Pacific Theater of operations (PTO), American cryptanalysts were 
able to identify the whereabouts of a small group of Japanese planes carrying Admiral Isoroku Yamamoto 
(1884-1943), the officer who conceived of the surprise attack on the United States naval base at Pearl Har-
bor on December 7, 1941. A squadron of Lockhead P-38 Lightnings ambushed and shot down Yamamoto’s 
plane over Bouganville Island in the Solomons. After Yamamoto’s plane fell in flames to the tropical forest 
below, a “pop goes the weasel” cipher was sent to American naval Admiral William F. “Bull” Halsey (1882-
1959) signifying “mission accomplished.” British cryptanalysts were able to break the key to the German 
Enigma ciphering machine allowing German communications to be read virtually “at will.” The intelligence 
unearthed in this manner significantly altered World War II’s outcome in the European Theater of opera-
tions (ETO).7 
 All cipher systems, except the one we will soon investigate, suffer from two serious defects. First, the 
recipient of the message must possess a secret key in order to decipher it. The problem with keys is that all 
potential recipients of your message must possess it (you would need a trusted dispatcher to hand deliver 
the key). Second, how do we know that the message has not been tampered with in transit? Someone may 
have obtained the key fraudulently, changed the message, and delivered it to you. We need a guarantee of 
authenticity.  
 A unique type of code, called public-key code (asymmetric cryptosystem), resolves both issues. In brief, 
here is how it works. First, Mr. Receiver makes public to all potential senders an enciphering key. Using this 
key, Mr. Sender enciphers a message and transmits it to Mr. Receiver. Mr. Receiver has a secret deciphering 
key whereby he can decode the message. The uniqueness about this system is that the enciphering key only 
works in one direction; i.e., to encipher a message (also known as the trapdoor one-way function). This key is made 
public to all. No special couriers are needed. Anyone can use it. Decoding this message is only possible through the 
use of the secret deciphering key. The one who sends the message cannot accidentally or deliberating reveal the 
deciphering key to any would-be interlopers or spies. 
 How is this done? This amazing technique is accomplished by means of the mathematics of prime num-
bers and modular arithmetic.8 Let’s first look at how a message is enciphered. Each alphabetic letter is as-
signed a two-digit number (this is called substitution). Next, this two-digit number is shuffled or scrambled 
according to a mathematical rule (this is called transposition). Here is where modular arithmetic enters the pic-
ture. Let’s set up a five column array of numbers as follows: 

                                                                                                                                                                         
6 A random sample is a group or subset of items taken from a given population; whether English prose or English people. 
7 For a history of code breaking in World War II, see Stephen Budiansky, Battle of Wits (New York: The Free Press, 2000). 
8 Modular arithmetic is also called the arithmetic of remainders. 
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Column 1 Column 2 Column 3 Column 4 Column 5
1 2 3 4 5 
6 7 8 9 10 
11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 
26 27 28 29 30 
31 32 33 34 35 
36 37 38 39 40 

 Note that each number in red is a power of 2 (i.e., 2, 4, 8, 16, and 32). Note their column placement. 2 
(21) is in column 2, 4 (22) is in column 4, 8 (23) is in column 3, 16 (24) is in column 1, and 32 (25) is in column 
2. What column would you think 26 (64) is in? Think about it first; then extend the rows of the table to con-
firm your conjecture. The number 64 (26) is in column 4, 128 (27) will be in column 3, 256 (28) will be in col-
umn 1, and 512 (29) will return to column 2. An obvious pattern is developing; i.e., 2, 4, 3, 1, 2, 4, 3, 1, etc. 
 Let’s investigate how the number 5 (the number of columns) interfaces with this scheme. Note the fol-
lowing table: 

 
Powers of 2 

Remainder when 
divided by 5 

Modular 
arithmetic 

21 = 2 2 2 ≡ 2 mod 59 
22 = 4 4 4 ≡ 4 mod 5 
23 = 8 3 8 ≡ 3 mod 5 

24 = 16 1 16 ≡ 1 mod 5 
25 = 32 2 32 ≡ 2 mod 5 
26 = 64 4 64 ≡ 4 mod 5 

27 = 128 3 128 ≡ 3 mod 5
28 = 256 1 256 ≡ 1 mod 5
29 = 512 2 512 ≡ 2 mod 5

 What we discover from an analysis of this table is this: the remainder of the powers of 2 when divided 
by 5 is the column the number resides! A similar pattern can be discerned by using any base (2, 3, 4, 5, etc.) and 
any number of columns (as long as the number of columns is a prime number and the base does not have this 
number as a factor). Let’s try base 8 with 5 columns (note: 5 is not a factor of 8; the greatest common factor 
of 5 and 8 is 1 meaning that these two numbers are relatively prime). Remember, to find the remainder, all we 
need to do is look at the last digit of the number (a number is a multiple of 5 if its last digit is 0 or 5). If the 
digit is greater than 5, then we subtract 5 from the digit to get the remainder. If the digit is less than 5, then 
we subtract the digit from 5 to get the remainder. 

 
Powers of 8 

Remainder when 
divided by 5 

Modular 
arithmetic 

81 = 8 3 81 ≡ 3 mod 5
                                                 
9 2 ≡ 2 mod 5 means that “2 divided by 5” results in a remainder of 2. In general, a ≡ r mod n means a

n
 leaves a remainder of r. 

Another example, 32 ≡ 2 mod 5 means that 32
5

 leaves a remainder of 2. 
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Powers of 8 

Remainder when 
divided by 5 

Modular 
arithmetic 

82 = 64 4 82 ≡ 4 mod 5
83 = 512 2 83 ≡ 2 mod 5

84 = 4096 1 84 ≡ 1 mod 5
85 = 32768 3 85 ≡ 3 mod 5

86 = 262144 4 86 ≡ 4 mod 5
87 = 2097152 2 87 ≡ 2 mod 5

88 = 16777216 1 88 ≡ 1 mod 5
89 = 134217728 3 89 ≡ 3 mod 5

 Let’s try one more, base 10 with 7 columns (note: 7 is not a factor of 10; 7 and 10 are relatively prime): 

 
Powers of 10 

Remainder when 
divided by 7 

Modular 
arithmetic 

101 = 10 3 101 ≡ 3 mod 7
102 = 100 2 102 ≡ 2 mod 7

103 = 1000 6 103 ≡ 6 mod 7
104 = 10000 4 104 ≡ 4 mod 7

105 = 100000 5 105 ≡ 5 mod 7
106 = 1000000 1 106 ≡ 1 mod 7

107 = 10000000 3 107 ≡ 3 mod 7
108 = 100000000 2 108 ≡ 2 mod 7

109 = 1000000000 6 109 ≡ 6 mod 7

 Note again that the remainder pattern starts to repeat itself based upon the number 
of columns; i.e., inspecting the last three tables, the remainder sequence has a repeating 
pattern of 4 digits in mod 5 (3, 4, 2, 1), 6 digits (3, 2, 6, 4, 5, 1) in mod 7.  Note also, in 
the previous three tables, that in mod 5, the fourth sequence gives a remainder of 1 (24 ≡ 
1 mod 5 and 84 ≡ 1 mod 5). In mod 7, the sixth sequence also gives a remainder of 1 (106 
≡ 1 mod 7). In 1640, the French mathematician Pierre de Fermat (1601-1665) confirmed 
this pattern in what is today known, in number theory, as Fermat’s Little Theorem. Here is 
the formal definition: 

If p is a prime number and n is any integer that does not have p as a factor, then np - 1 
≡ 1 mod p.10 

 Stated in another way, np - 1 will always have a remainder of 1 when divided by p. In our examples, 25 - 1 = 

24 ≡ 1 mod 5, 85 - 1 = 84 ≡ 1 mod 5, and 107 - 1 = 106 ≡ 1 mod 7. 
 Stay with me for a few more preliminaries. In 1760, the Swiss mathematician Leonhard Euler (1707-
1783) observed another interesting pattern in prime numbers. First, Euler defined a phi-function (phi is a 
Greek letter written as ϕ) as follows: 

                                                 
10 Another way of saying the same thing is np-1–1 ≡ 0 mod p. This means that p divides into np-1–1 with zero remainder. 

 
Pierre de Fermat 
(Public Domain) 
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Given any natural number n, ϕ(n) represents the number of natural numbers less than n that have no 
factor in common with n. 

 For example, given the natural number 6, then there are only two numbers, 1 
and 5, less than 6 that have no factor in common with 6 (i.e., the ordered pair (1, 
6) and (5, 6) are relatively prime; i.e., the GCF of 1 and 6 is 1, the GCF of 5 and 6 
is 1). Hence ϕ(6) = 2. The table below contains the values of ϕ(n) from n = 2 to 
15. To augment your familiarity with Euler’s definition, verify the results in each 
instance. 

 ϕ(6) = 2 ϕ(11) = 10
ϕ(2) = 1 ϕ(7) = 6 ϕ(12) = 4 
ϕ(3) = 2 ϕ(8) = 4 ϕ(13) = 12
ϕ(4) = 2 ϕ(9) = 6 ϕ(14) = 6 
ϕ(5) = 4 ϕ(10) = 4 ϕ(15) = 8 

 Look carefully at the phi-function of prime numbers in this table and note the pattern: ϕ(2) = 1, ϕ(3) = 
2, ϕ(5) = 4, ϕ(7) = 6, ϕ(11) = 10, ϕ(13) = 12. In general: 

 If p is prime, then ϕ(p) = p – 1. 

 Now let’s suppose that the numbers p and q are distinct primes. Let’s make this specific. Let p = 7 and q 
= 17 (both are distinct primes). Then what is ϕ(pq) = ϕ(7×17) = ϕ(7⋅17)? Consider first the number 7⋅17 
(we will not find its product for reasons that will soon become obvious). To calculate ϕ(7⋅17) we start with 
the numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, …, 7⋅17 and eliminate all the multiples of 7 and 17. Note that among these 
7⋅17 numbers, there are 17 multiples of 7 and 7 multiples of 17. We can then eliminate 7 + 17 = 24 num-
bers from the total of 7⋅17. The only common multiple of both 7 and 17 is 7⋅17. So, we subtract 1 from 24 to 
get 23. What we have left is the number will are looking for; i.e., ϕ(7⋅17) = 7⋅17 – 23. We can write this as 
follows to note how we got 23: 

ϕ(7⋅17) = 7⋅17 – 7 – 17 + 1  

 Let’s apply the distributive rule of multiplication over subtraction to the expression 7⋅17 – 7. We are es-
sentially factoring 7 from the two terms, 7⋅17 and –7. Factoring 7 from 7⋅17 (7⋅17 divided by 7) gives us 17. 
Factoring 7 from -7 (-7 divided by 7) gives us -1. We get: 

7⋅17 – 7 = 7(17 – 1) = 7(16) 

 We now have 7(16) – 17 + 1. Let’s look at the sum of the two terms -17 + 1. What does -17 + 1 equal? 
You can intuitively determine what happens if I owe someone $17 (-17) and I pay him back $1 (+1). How 
much will I owe that person after I pay back $1? $16. Hence, -17 + 1 = -16. Therefore, 7(16) – 17 + 1 = 
7(16) – 16. Again, let’s apply the distributive rule of multiplication over subtraction. We factor 16 from the 
two terms, 7(16) – 16. We get: 

7(16) – 16 = 16(7 – 1) = 16(6) 

 Hence, ϕ(7⋅17) = 6(16) = 16⋅6 = 96. Euler noted that, in general, if p and q are distinct primes, then this 
nifty formula is used to calculate ϕ(pq): 

ϕ(pq) = (p – 1)(q – 1) 

 
Leonhard Euler (Public 
Domain) 
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Hide!

Plain text

Hide!

Plain text

EncryptionKey

Cipher text

DecryptionKey

 Also in 1760, Euler extended Fermat’s Little Theorem using ϕ notation. If p and q are relatively prime (i.e.; 
the greatest common factor between p and q is 1), then: 

( )qp 1 mod qφ ≡  

 Some group of symbols, isn’t it? Don’t get lost in how they look (which will be new to many of you). 
Instead, understand what the symbols mean. Let’s see how this works. If p = 7 and q = 17, then ϕ(17) = 16. 
Why? If p is prime, then ϕ(p) = p – 1. Therefore, 716 ≡ 1 mod 17. Let’s try one more example. If p = 7 and q 
= 9 (both relatively prime but 9 is not a prime number), then ϕ(9) = 6 (from our table above). Therefore, 76 
= 1 mod 9. To confirm this, note that 76 = 117,649. 117,649/9 = 13,072 with remainder 1. 
 Here is a list, five to be exact, of our theorems, observations, and definitions so far: 

1. Fermat’s Little Theorem: If p is a prime number and n is any integer that does not have p as a factor, 
then np – 1 ≡ 1 mod p. 

2. phi-function: Given any natural number n, ϕ(n) represents 
the number of natural numbers less than n that have no 
factor in common with n. 

3. If p is prime, then ϕ(p) = p – 1. 
4. If p and q are distinct primes, then ϕ(pq) = (p – 1)(q – 1). 
5. Euler’s extension of Fermat’s Little Theorem: If p and q are 

relatively prime, then ( )qp 1 mod q.φ ≡  

All of these relationships were fixed in the mathematical 
landscape by the middle of the 18th century. In 1977, three 
mathematicians, Ronald Rivest (1948-), Adi Shamir (1952-), and 
Leonard Adleman (1947-), developed a commercial public-key 
encryption methodology. In 1982, these men founded RSA Data 
Security, Inc. of Redwood City, California, to market the system. 
The extraordinary success of the RSA public-key code in the late 
20th century business world is owing to the observations of 
Fermat and Euler; discoveries made over 200 years before RSA 
Data Security, Inc. was founded. 
 The RSA code exploits item Euler’s extension of Fermat’s 
Little Theorem and the fact that, even though modern computers 
are extremely fast, it still takes them an enormous amount of time 
to factor numbers that are about 200 digits in length. Here is how 
the RSA code works. Suppose that p and q are two very large prime 
numbers (each about 100 digits). The values of these two numbers 
will be kept concealed; only Mr. Rishad11 Clandestine knows. 
These two numbers are the secret deciphering key. Their product n = 
pq, however, will be given to Mr. General Q. Public. n is called 
the modulus of the RSA code; it is the public enciphering key. Since 
Mr. Rishad Clandestine knows the value of p and q, then he also 
knows the value of ϕ(n) = (p – 1)(q – 1). 

                                                 
11 Mr. Clandestine’s first name is a secret code that honors the first two letters of Ronald Rivest, Adi Shamir, and Leonard Adle-
man’s last names. 
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The security of the code is based on the fact that one has to know p and q in order to break it. Factoriz-
ing n to obtain p and q in any systematic way when n is 200 digits takes years of computer time.12 
 Mr. Rishad Clandestine gives Mr. General Q. Public a public encryption key e. e is a natural number cho-
sen such that it is relatively prime to ϕ(n); that is, the greatest common factor between e and ϕ(n) is 1.  

Mr. General Q. Public now wants to encrypt the message, “Math sure is fun but it takes a lot concentra-
tion.” He assigns a unique number x to each letter of the message such that x < n (no trouble here since n is 
a 200 digit number). Each number x is encrypted to another number c (also a natural number that is less 
than n) using the following encryption function: 

xe ≡ c mod n 

 Mr. General Q. Public sends his message to Mr. Math Student. Mr. Rishad Clandestine has given Mr. 
Math Student a private (known only to him) decryption key d. d is a natural number chosen such that: 

ed ≡ 1 mod ϕ(n) 

 Again, because of the secrecy of ϕ(n), it would take many years of computer time to calculate d from e. 
This is why Mr. Rishad Clandestine must tell Mr. Math Student what d is. When Mr. Math Student receives 
an encoded c, he deciphers it to another number y (also a natural number that is less than n) by using the fol-
lowing deciphering function: 

cd ≡ y mod n 

 I will now show you that y ≡ x mod n; i.e., the deciphered number is congruent to Mr. General Q. Public’s original 
number. Note first that since ed ≡ 1 mod ϕ(n), then there exists, by the definition of division, another natural 
number k such that: 

ed = k[ϕ(n)] + 1 

 Although these symbols may look like nothing but comical hieroglyphics (what with the brackets, paren-
theses, Greek letter ϕ, the number 1, +, =, and letters e, d, k, and n), what we are saying, using an example, 
is this: 

If 41 ≡ 1 mod 5, then 41 = 8⋅5 + 1 

 This should be easy to understand. We’ve shown how a general formula applies to a specific example. 
This is the power of algebra, the power of using symbolic notation to reason to a general conclusion. The 
symbol ed represents the product of two numbers. The symbols k[ϕ(n)] + 1 also represents the product of 
two numbers and + 1, well, you should know what that means! In essence, ed = k[ϕ(n)] + 1 means “the 
product of two numbers equals the product of two other numbers plus 1.” Or, using different symbols, we 
can say that if x and y are the first two numbers, and k and z are the next two numbers, then xy = kz + 1. 

Now, let’s continue. Go slow with the following. Symbols are going to start flying all over the place. See 
if you can understand what is happening. Reread and reread until understanding comes. You will be getting 
a taste of how mathematicians apply reason with the ordered manipulation of symbols to solve a problem.  

Using mod n arithmetic (i.e., cd ≡ y mod n) we know that: 

(1) y ≡ cd 

                                                 
12 Note, when computers become fast enough to factor 200 digit numbers, all Mr. Rishad Clandestine has to do is select larger 
prime numbers p and q. Since the number of prime numbers is infinite in scope, it appears as though Mr. Rishad Clandestine will 
always be in business. 
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Again, using mod n arithmetic (i.e., xe ≡ c mod n), we know that xe ≡ c. Substituting xe for c in (1), we get: 

(2) y ≡ cd ≡ (xe)d 

The product law of exponents states that amn = (am)n. By this law we can conclude that (xe)d = xed. Hence, 
(2) now becomes: 

(3) y ≡ cd ≡ xed 

Since, ed = k[ϕ(n)] + 1, let’s tone down the proliferation of symbols by letting ϕ(n) = z. Leonhard Euler 
used this technique many times to simplify the manipulation of complex algebraic expressions. Hence ed = 
kz + 1. Substituting kz + 1 for ed in (3), we get: 

(4) y ≡ cd ≡ kz 1edx x +=  

The sum law of exponents states that am + n = aman. By this law, (4) becomes: 

(5) y ≡ cd ≡ kz 1ed kz 1 kzx x x x x x+= = = (remember that, by convention, x1 = x) 

By the product law of exponents, amn = (am)n, (5) becomes: 

(6) y ≡ cd ≡ ( )kkz 1ed kz 1 kz zx x x x x x x x+= = = =  

Now, let’s replace z with ϕ(n). What is ( )( )knx xφ congruent to in mod n arithmetic? We know, from Euler’s 
extension of Fermat’s Little Theorem, that: 

( )nx 1 mod nφ ≡  

From Euler’s extension, we get: 

( )( ) ( )( ) ( )
k k kn nx x x x x 1 mod nφ φ= ≡  

 Note that we applied the commutative law of multiplication (ab = ba) to set ( )( ) ( )( )k kn nx x x xφ φ= . Then 

we substituted 1 mod n  for ( )nxφ . The exponent k simply “goes along for the ride.” 
 Since 1k = 1 (1 raised to any power is 1), then we know that (1 mod n)k = 1 mod n. Substituting 1 mod n 
for (1 mod n)k, we now have: 

( )( ) ( )
knx x x 1 mod nφ ≡   

 We also know that x (1 mod n) ≡ x mod n (the product of a number and 1 is that number). Hence, y ≡ x 
mod n! Stringing all this together and thanks to the methods of algebra, (6) becomes: 

(7) ( ) ( )( )kk n 1 nd edy c x x x x x mod nφ +⎡ ⎤ φ⎣ ⎦≡ ≡ = = ≡ , or (7) becomes: 

(8) y ≡ x mod n 

 QED! We have proved what we set out to prove; i.e., y ≡ x mod n or the deciphered number is congruent to 
Mr. General Q. Public’s original number. 
 Now, let’s replace the symbols with some numbers to illustrate how the whole process works. Rest as-
sured, I will pick small numbers to work with. High-speed computers can “compute” those 100 and 200 
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digits numbers faster and more accurately than we could ever do but we need to see how the principle is 
applied.  
 Mr. Rishad Clandestine chooses two prime numbers, p = 5 and q = 11. These numbers are the secret deci-
phering keys. Therefore, n (the public enciphering key) = pq = 5⋅11 = 55 and ϕ(n) = (p – 1)(q – 1) = 4⋅10 = 40. 
We have all the players now: p = 5, q = 11, n = 55, ϕ(n) = 40. To keep things simple, let’s say that Mr. 
General Q. Public wants to send the number 2 to Mr. Math Student. So, we let x = 2. 
 Now Mr. Rishad Clandestine has to give Mr. General Q. Public a public encryption key e. Remember, e 
is a natural number such that it is relatively prime to 40. We can choose several; let e = 23. Next Mr. Rishad 
Clandestine has to give Mr. Math Student a secret decryption key d. Remember, d is a natural number such 
that 23d ≡ 1 mod 40. Let d = 7 since 23⋅7 = 161 = 1 mod 40. 

We are ready to transmit. Mr. General Q. Public must scramble or encrypt the number 2 to another 
number c according to the encryption function xe ≡ c mod n. Since x = 2, e = 23 and n = 55, then: 

223 ≡ c mod 55 

 You can use your calculator for this one. 223 = 8,388,608. 8,388,608/55 = 152,520 with remainder of 8. 
Therefore 223 ≡ 8 mod 55. Mr. General Q. Public transmits c = 8 to Mr. Math Student. 

After receiving 8 from Mr. General Q. Public, Mr. Math Student must decrypt 8 to another number y ac-
cording to the deciphering function cd ≡ y mod n. Since c = 8, d = 7, and n = 55, then: 

87 ≡ y mod 55 

 Engage your calculators again. 87 = 2,097,152 and 2,097,152/55 = 38,130 with remainder of 2. There-
fore 87 ≡ 2 mod 55. Mr. Math Student has decoded Mr. General Q. Public’s message as y = 2. Message re-
ceived! 
 Notice that, with our simple example, we found ourselves working with large numbers (e.g., 223 and 87). 
Imagine starting with two prime numbers that are 100 digits in length! The RSA code provides a safe and 
secure way to transmit data between companies, people, governments, schools, etc. It is the basis for secur-
ing data transmitted across the Internet. Until some ingenious mathematician finds a way to break this cod-
ing scheme, it will remain safe (for now). Maybe there is no way to break this scheme. Who knows for sure? 
Only God does in actuality and it may take man a couple of centuries to catch up with His infinite and 
comprehensive knowledge. 

This was a challenging essay, for sure (from grade school codes to some pretty impressive number the-
ory). Yet, the RSA code was generated from two simple mathematical principles (division and remainders), 
the law of exponents, basic prime number theorems, and rudimentary algebra. Let this be the lesson learned: 
that the innovation of mathematical principles can be very useful to the world in which we live. 


