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Vector Addition 

Note: This essay is ex-
tracted from a Lesson 
from the forthcoming 
textbook Mathematics: 
Building on Foundations. 

 Early in the 20th century, the French mathematician Gaston Maurice Julia (1893-1978), after losing his 
nose fighting in World War I, devised an iterative mathematical formula, using the arithmetic of complex 
numbers, for what is now called the Julia Set. Recall 
that a complex number is of the form a + bi where 
a, b ∈  and i = 1−  and that every complex 
number can represented in what is called a complex 

number plane. 
 There is 
an arithmetic 
to complex 
numbers that 
is fascinating. 
For example, 
adding two 

complex numbers is just a matter of adding their 
corresponding real number parts and their corre-
sponding imaginary number parts. In general, (a + 
bi) + (c + di) = (a + c) + (b + d)i. For example, (3 
+ 4i) + (2 – 8i) = (5 – 4i). Scientists, upon seeing 
the graphical representation of the addition of 
complex numbers, immediately understood the complex number sum as representing the resultant vector of 
two independent forces (based upon Isaac Newton’s parallelogram law of addition of forces). 

Multiplying two complex numbers works out like this: 

 (a + bi)(c + di) = ac + adi + bci +bdi2 = 
 ac + i(ad + bc) + bdi2 
 Since, by definition, i2 = -1, then we get: 

 (a + bi)(c + di)= (ac – bd) + (ad + bc)i 

Julia’s formula is a simple iterative scheme. Given a 
complex number of the form a + bi, this number is first 
squared. In general, (a + bi)2 = (a + bi)(a + bi) = a2 + abi + abi 
+ b2i2 = a2 + 2abi + b2i2 Again, since i2 = -1, then we get: 

(a + bi)2 = a2 – b2 + 2abi 

Once this number is squared, another complex number of 
the form c + di is added to it. In general, we get: 

(a + bi)2 + c + di = (a2 – b2) + c + (2ab + d)i 

This new number is now input back into the iterative 
process; i.e., it is squared and c + di is added again to this 
square. The result is squared, c + di is added to it, and the 
process continues ad infinitum. 

Pause the play button and wait nearly seven decades until the invention of the personal computer. With 
the processing power of these machines, along with their enhanced graphical display, Julia’s iterations could 
enter the world of the visual. Wonder of wonders, the graphs of Julia sets boggle the mind in both intricacy 
and beauty. 
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Before we visualize these “complex” wonders (pun intended), let’s simplify Julia’s iteration formula. 
Given a complex number of the form a + bi, we square it. Then, we square the result. We continue this 
process ad infinitum. What happens when we picture this simpler iteration on the complex number plane? 

Let’s start with an example. Consider the complex number 2 + 3i. (2 + 3i)2 = -5 + 12i. Let’s plot these 
points and draw some conclusions. After plotting these points on the complex number plane, let’s first draw 
a line segment from the origin to each. 

 
 

 Let’s now make use of some trigonometry to quantify what we are 
seeing. We can also represent complex numbers geometrically in polar 
form. In the figure, the phase angle θ (a physics term) that the line 
segment OP  makes with the positive real axis is called the argument1 or 
amplitude2 of the complex number a + bi. The length r or OP  is called the 
absolute value or modulus3 of a + bi. By the Pythagorean Theorem: 

2 2r a b= +  

It was the German mathematician Carl Friedrich Gauss (1777-1855) who introduced the vector (direc-
tion number) concept to the complex number plane. Since a + bi can be considered a vector, |a + bi| is the 
magnitude of the vector and is defined as follows: 

2 2|a bi| a b+ = +  

We can note four more useful relationships from the figure. We see that: 

                                                 
1 Argument is Latin for “make clear.” 
2 Amplitude is Latin for “large.” 
3 Modulus is Latin for “measure.” 
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(2 + 3i)2 = 5 + 12i 

1. cos θ = a
r

. Hence, a = r cos θ. 

2. sin θ = b
r

. Hence, b = r sin θ. 

3. tan θ = b
a

 ⇔ θ = 1 btan
a

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

 – on your calculator find the quotient of b/a and then hit the tan-1 key 

(arctan or the inverse of the tangent function). 
4. 2 2r a b= +  

Therefore, a + bi = r cos θ + ir sin θ = r(cos θ + i sin θ). The expression r(cos θ + i sin θ) is commonly 
abbreviated as r cis θ where c represents cos, s represents sin, and i represents 1− . r cis θ is called the polar 
or trigonometric form of a complex number. 

Let’s now determine r and θ for the complex number 2 
+ 3i. We get: 

2 2r 2 3 4 9 13= + = + =  

θ = 1 13tan tan (1.5) 56.31
2

− −⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

Next, let’s determine r1 and θ1 for the complex number 
(2 + 3i)2 = -5 + 12i. 

2 2
1r ( 5) 12 25 144 169 13= − + = + = =  

θ1 = 1 112tan tan ( 2.4) 67.38
5

− −⎛ ⎞− = − = −⎜ ⎟
⎝ ⎠

 

What conclusions can we draw? The first observation we 
can make is that r1 = r2 since 13 = 

2
13 . In other words, 

the magnitude r of the vector is squared. How do we 
compare θ and θ1? For 2 + 3i, θ = ∠BOA. For 5 + 12i¸θ1 
= ∠COD. Recall that, from our knowledge of trigonometry 

θ = 1 btan
a

− ⎛ ⎞
⎜ ⎟
⎝ ⎠

 will always be negative if the point or 

ordered pair lies in the second quadrant. 
Let’s now consider the value of θ1. The measurement we have calculated θ1 starts at the left half of the 

real number axis (x-axis) and moves clockwise to OC . We are seeking the measure of ∠AOC. To get this 
measure, we start at the right half of the real number axis and move counterclockwise until we reach OC . 
We know that the degree measure from the right half of the real axis to the top half of the imaginary axis (y-
axis) is 90°. From the top half of the imaginary axis to OC  is 90° – 67.38° = 22.62°. Hence, ∠AOC = 90° 
+ 22.62° = 112.62°. Compare this measure with θ = ∠BOA = 56.31°. θ1 = 2θ! θ, when measured counter-
clockwise from the real axis, doubles! 

Let’s summarize our conclusions. When we square a complex number a + bi, then (1) the magnitude r is 
squared and (2) θ is doubled. Quite amazing, isn’t it? 
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Elementary Julia Set 

Now, let’s return to Julia sets and let’s try to understand what is meant by the term. Applying the simpli-
fied iterative schemed (square the complex number each time) to 2 + 3i, we get: 

(2 + 3i)2 = -5 + 12i 
(-5 + 12i)2 = -119 – 120i 
(-119 – 120i)2  = -239 + 28,560i 
(-239 + 28,560i)2 = -815,616,479 –13,651,680i 
(-815,616,479 –13,651,680i)2 = 665,043,872,449,535,041+ 22,269,070,348,069,440i 
My, what large “components” these successive complex numbers are getting close to! If we try to plot 

them (we won’t) we should realize that the points are galloping far, far away from the origin. 
Next, let’s try a different complex number, 0.3 + 0.6i. We get: 
(0.3 + 0.6i)2 = -0.27 + 0.36i 
(-0.27 + 0.36i)2 = -0.0567 – 0.1944i 
(-0.0567 – 0.1944i)2  = -0.03457647 + 0.02204496i 
(-0.03457647 + 0.02204496i)2 = 0.0007095520163 – 0.001524473796i 
(0.0007095520163 – 0.001524473796i)2 = -0.000001820556291 – 0.000002163386912i 
In contrast, what small “components” these successive complex numbers are getting close to! If we try to 

plot them (again, we won’t) we should realize that the points are squeezing closer and closer toward the ori-
gin. 

One more: Let’s try the same iterative scheme for the complex number 0.6 + 0.8i. We get: 
(0.6 + 0.8i)2 = -0.28 + 0.96i 
(-0.28 + 0.96i)2 = -0.8432 – 0.5376i 
(-0.8432 – 0.5376i)2  = 0.4219724 + 0.90660864i 
(0.4219724 + 0.90660864i)2 = -0.6438784522 + 0.7651277924i
(-0.6438784522 + 0.7651277924i)2 = -0.1708410775 – 0.9852985975i
What is happening in this instance? Let’s plot these points. Amazingly, they all lie on the circumference 

of a circle of radius = 1! Can we analytically explain why this is so? Our starting point is 0.6 + 0.8i. In this 
case, a = 0.6 and b = 0.8. Hence, 2 2r (0.6) (0.8) 0.36 0.64 1 1= + = + = = . Hence, when we square the 
complex number 0.6 + 0.8i, r will be 12 = 1. Hence, for 
successive squares of 0.6 + 0.8i, r will always be 1. 

Let’s take our three starting points, 2 + 3i, 0.3 + 0.6i, and 
0.6 + 0.8i, and see 
if we can come to 
some conclusions. 
If a starting point is 
outside the circle 
centered at the 
origin with radius 1 
(e.g., 2 + 3i), then 
the iteration values 
gallop off to 
infinity. If a starting 
point is inside the 
circle centered at 
the origin with 
radius 1 (e.g., 0.3 + 0.6i), then the iteration values squeeze toward 
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Julia Set, seed = (-1 + 0i) 

the origin. Finally, if a starting point is on the circle centered at the origin with radius 1(e.g., 0.6 + 0.8i), then 
the iteration values, when plotted, remain on that circle. 

Hence, the circle acts as a boundary separating all the starting points that lie outside it (and iterationally, 
gallop off to infinity) from all the starting points that lie inside it (and iterationally, squeeze toward the cir-
cle’s origin). This circle, the interface between these two sets of numbers, is what we mean by a rudimentary 
Julia Set. We can picture the Julia Set by filling in the circle. In our figure, the space colored blue represents 
the set of starting points whose iterations do not gallop off to infinity. 

The circle in the complex number plane is the first and basic Julia Set. Now, we are ready to make things 
interesting and therefore astonishingly beautiful. To do so, we add one extra ingredient to our iterative proc-
ess. We start with a “seed” complex number, a + bi. This number always remains fixed. For example, we let 
a + bi = -1 + 0i. We then choose any complex number from among an infinite number of possibilities. Let’s 
choose 0 + 0i. We square 0 + 0i, add -1 + 0i to it. Then, we take that answer, square it, and add -1 + 0i to it. 
We continue this iterative process ad infinitum. Here is what we get: 

(0 + 0i)2 + (-1 + 0i) = -1 + 0i 
(-1 + 0i)2 + (-1 + 0i) = 0 + 0i 
(0 + 0i)2 + (-1 + 0i) = -1 + 0i 
(-1 + 0i)2 + (-1 + 0i) = 0 + 0i 

 =  
 Let’s choose another complex number: 2 + 3i. We get: 

(2 + 3i)2 + (-1 + 0i) = -6 + 12i 
(-6 + 12i)2 + (-1 + 0i) = -109 – 144i 
(-109 - 144i)2 + (-1 + 0i) = -8856 + 31,392i 
(-8856 + 31,392i)2 + (-1 + 0i) = -907,028,929 – 556,015,104i

 =  
 This “extra ingredient”, adding (-1 + 0i) each time, generates a Julia set just as before. Certain starting 
points will iteratively gallop off to infinity. Other starting points will not join this infinity race course. If we 
think of all points in the complex number plane as valid starting points, then some will iteratively race to 
infinity and others will not. The interface, the 
boundary, between these two sets of complex 
numbers is called the Julia Set. The Julia Set for the 
“seed” complex number of (-1 + 0i) is pictured; the 
computations were performed by a modern 
personal computer.4 
  All the complex number points in the dark 
region do not gallop off to infinity. Those in the 
blue region do. The blue region that is darker 
indicates that the iterative process “gallops” faster. 
Hence, shade of color represents the pace of the 
“race to infinity.” Please pause to gaze at this 
exquisite beauty. Words cannot express it properly. 
The wonder of Julia sets is that they infinitely self-
replicate. Hence, you can “zoom” in at any point 
are recognize the same geometric patterns as the 
                                                 
4 I am using Ultra Fractal v4.04 (standard edition) to generate these fractal images. You can order this software from 
www.ultrafractal.com and experiment to your heart’s content. 
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Julia Set, seed = (-1 + 0i) with “zoom” feature 

 
Julia Set, seed = (0.35 + 0.5i) 

original. Here is one example of a “zoom” (we aimed our zoom at the top small “bubble”): 

 The next set of images will reveal the complex, intricate, and beautiful wonders of Julia sets: 
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Julia Set, seed = (-0.475 + 0.88i) 

 The number of Julia sets (and their associated graphical representation) is infinite because there is an 
infinite number of complex numbers. Hence, these intricate and infinitely replicated designs have no end. 
Mathematics and dazzling and spectacular beauty are indeed connected! You could immerse yourself in this 
immensity of beauty forever! Think about that! 
 Dr. Julia, now meet Dr. Mandelbrot. Benoît B. Mandelbrot (1924-), a Jewish-American mathematician, 
is known as the “father of fractal geometry.” Mandelbrot resurrected Julia’s work to new heights but stand-
ing back from these infinite sets and looking at the “big picture.” Professor Mandelbrot endeavored to look 
at all of the (a + bi) Julia sets together. The set of all Julia sets is called the Mandelbrot Set. If you can be-
lieve it, the Mandelbrot Set is a mathematical object that captures all the information about the infinite num-
ber of Julia sets. For each point in the complex number plane, we can draw a unique (a + bi) Julia Set. The 
filled in Julia Set will either be one piece or more than one piece. Here is an example of a Julia Set that is 
more than one piece. 
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Mandelbrot Set, magnified top portion 

If the filled in (a + bi) Julia Set is connected, then we can denote that the point a + bi is a member of the 
Mandelbrot set. Hence, the Mandelbrot set is the set of all complex numbers a + bi exhibiting the property 
that the filled in (a + bi) Julia set is just one piece. The Mandelbrot set can be pictured. Here it is: 

For each point in or near the Mandelbrot Set, we can associate a filled-in Julia Set that is in one piece. If 
the point is outside the Mandelbrot Set, then the associated filled-in Julia Set is made of multiple pieces. We 
can also “zoom” into different regions of the Mandelbrot Set in order to marvel at its infinitely detailed and 
intricate beauty. This zoom investigation can be repeated ad infinitum. 
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Mandelbrot Set, three magnifications deep 

I hope you thoroughly enjoyed meeting Dr. Julia and observing the encounter between Dr. Julia and Dr. 
Mandelbrot. After this excursion into the mathematics of complex numbers, infinite iterations, Julia Sets, 
and the Mandelbrot Set, I hope that you have come to appreciate the reality that mathematics is indeed beau-
tiful, not just in the logic of its many and elegant proofs, but in the infinite array of its sometimes fascinating 
and enthralling geometry. Praise God for the visual delight of this breathtaking splendor. 


