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Note: This essay is extracted from 
a Lesson from the forthcoming 
textbook Mathematics: Building 
on Foundations. 

There are eleven basic rules that govern all work in elementary algebra. Five of these rules relate to addi-
tion, five relate to multiplication, and the final rule connects addition to multiplication. These rules encapsu-
late all of the basic properties of real numbers. Because the structure of the set of real numbers reflects all of 
these rules, mathematicians call the real numbers a field.1 Here they are in symbolic form: 

1. a, b     a + b  . ( means “implies.”) 

2. a, b  , a + b = b + a. ( means “for all” or “for 
every.”) 

3. a, b, and c  , a + (b + c) = (a + b) + c. 

4. a ,  an element in  called 0  0 + a = a. Re-

member,  means “such that” and  means “there exists.” 

5. For each pair a and b  , there is exactly one x    a + x = b. 

6. a, b    ab  . 

7. a, b  , ab = ba. 

8. a, b, and c  , a(bc) = (ab)c. 

9. a ,  an element in  called 1  1a = a. 

10. For each pair a and b   (where a  0), there is exactly one x    ax = b. 

11. a, b, and c  , a(b + c) = ab + ac. 
The closure property for real numbers under addition and multiplication connect to their respective in-

verses. The inverse operation of addition is subtraction and the inverse operation of multiplication is divi-
sion. One inverse operation of exponentiation is extraction of roots. For a review, the following table illus-
trates these operations and their inverses. 

Operation Inverse 
Addition (7 + 3 = 10) Subtraction (10 – 3 = 7) 
Multiplication (6  5 = 30) Division (30/5 = 6) 
Exponentiation (22 = 4) Extraction of roots ( 4 = 2)

The inverse of raising any number x to the second power, i.e., x2 = a, is called extracting the square (from 

2) root, i.e., a x  . The inverse of raising any number x to the third power, i.e., x3 = a, is called extracting 

the cube (from 3) root, i.e., 3 a x . The inverse of raising any number to the fourth power, i.e., x4 = a, is 

called extraction the fourth root i.e., 4 a x  . In symbols, these operations look as follows: 

Raising to the nth power Extracting the nth root 
22 = 4 4 2   
23 = 8 3 8 2  
24 = 16 4 16 2   
2n = b n b 2 if n is even   

                                                 
1 There is actually a distinction between what mathematicians call a field and an ordered field, but we will not embrace such minu-
tiae in this essay. 
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Raising to the nth power Extracting the nth root 
 n b 2 if n isodd  

 Before we continue, note the odd/even principle. When you are extracting the nth root of a positive num-
ber and n is even, you will always get two answers, one positive and the other negative. This is because a neg-
ative number times a negative number equals a positive number; i.e., (-2)(-2) = 4. Note also that 
(-2)(-2)(-2)(-2) = 16.  If you are multiplying an even number of negative numbers, your answer will also be 
positive. If you are multiplying an odd number of negative numbers, the answer will always be negative. For 

example, (-2)(-2)(-2) = -8 but (2)(2)(2) = 8. Therefore, 3 38 2, but 8 2.     
 Before the advent of the electronic hand held calculator (in the late 1960s), all 
arithmetical operations had to be worked out by hand. By the early 17th century, great 
advances had been made both in astronomy and in exploring the world through sea 
voyages. Both these advances necessitated performing arithmetical calculations using 
large numbers. A Scottish mathematician, John Napier (1550-1617) noted these dif-
ficulties and echoed the bane of many students of arithmetic, 

Seeing there is nothing that is so troublesome to mathematical practice, nor that 
doth more molest and hinder calculators, than the multiplication, divisions, 
square and cubical extractions of great numbers…. I began therefore to consider 
in my mind by what certain and ready art I might remove those hindrances.2  

 Napier removed these difficulties by developing a system of “arithmetic” that replaced multiplication by 
addition and division by subtraction. Consider the table below (powers of 2): 

n 1 2 3 4 5 6 7 8 9 10 11 12
2n 2 4 8 16 32 64 128 256 512 1024 2048 4096

 Napier first noted that if he multiplied any number in row 2 by any other number in row 2, his answer 
was a number in row 2. Second, he noted that when you multiplied any two numbers in row 2, then the an-
swer correlated to an addition problem in row 1 (he made use of the sum law of exponents). Inversely, if you di-
vided any two numbers in row 2, then the answer correlated to a subtraction problem in row 1 (the inverse of 
the sum law of exponents). 

Row 2 Row 1 
2  4 = 8 1 + 2 = 3 (read 8 in row 2) 

2  8 = 16 1 + 3 = 4 (read 16 in row 2) 

8  16 = 128 3 + 4 = 7 (read 128 in row 2) 

16  64 = 1024 4 + 6 = 10 (read 1,024 in row 2)

2048

16
= 128 

11 – 4 = 7 (read 128 in row 2) 

64

8
= 8  

6 – 3 = 3 (read 8 in row 2) 

 By this method, Napier arrived at another inverse of exponentiation. Given 2x = n, recall that we denote 2 
as the base and x as the exponent. In exponentiation, we are given the base and the exponent. From this, we 

                                                 
2 John Napier, Mirifici logarithmorum canonis description (1614). Cited in George A. Gibson, “Napier and the Invention of Loga-
rithms,” in Handbook of the Napier Tercentenary Celebration, or Modern Instruments and Methods of Calculations, ed. E. M. Horsburgh (Los 
Angeles: Tomash Publishers, [1914] 1982), p. 9. 

 
John Napier (Public 
Domain) 
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determine that result; i.e., n. For example, 24 = 16. In Napier’s inverse, we are given the result (i.e., n) and 
the base i.e., 2). From this, we determine the exponent (i.e., x). He called this process “finding the logarithm.”3 
For example, if 2x = 16, then x (the logarithm of 16) = 4. The logarithmic table looks as follows: 

Number Logarithm 
1 0 
2 1 
4 2 
8 3 

16 4 
32 5 
64 6 

128 7 
256 8 
512 9 

1024 10 
2048 11 
4096 12 

 This table has one serious limitation. What happens if we want to multiply 3 by 22? What is the loga-
rithm of 3? What is the logarithm of 22? From the table, we note that the logarithm of 3 must be between 1 
and 2 and the logarithm of 22 must be between 4 and 5. To find the logarithm of 3, we must determine x 
such that 2x = 3. We know for certain that x will not be a positive integer; it will be a fraction or its decimal 
equivalent. 

Fractions do cause some inconvenience in calculations. Our table does not yet contain any fractions (the 
smallest is 20= 1). We must now introduce powers of 2 that are less than 1 if we want to express fractions in 
our table. Hence, we must consider 2-1, 2-2, 2-3, etc. When we raise any number to a negative exponent, it 

means you take its reciprocal. In symbols, n
n

1
a

a
  . Hence, 1 1

2 0.5
2

   , 2
2

1 1
2 0.25

2 4
    , and 

3
3

1 1
2 0.125

2 8
    . We can add these numbers to our table: 

Number Logarithm 
0.0625 -4 
0.125 -3 
0.25 -2 
0.5 -1 

1 0 
2 1 
4 2 
8 3 

                                                 
3 Logarithm is derived from two Greek words, logos (reason or proportion) and arithmos (number), and it literally means “propor-
tion number.” Although, we introduced exponents (Lesson 2.5) before logarithms, according to mathematics historian Howard 
Eves (1911-2004), “One of the anomalies in the history of mathematics is the fact that logarithms were discovered before expo-
nents were in use.” See Howard Eves, An Introduction to the History of Mathematics (New York: Holt, Rhinehart and Winston, [1953, 
1964, 1969] 1976, p. 250. 
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The miraculous powers of 
modern calculation are due 
to three inventions: the Arabic 
Notation, Decimal Fractions, 
and Logarithms. 

Florian Cajori, A History of Mathe-
matics (1893). 

 This helps us somewhat with finding the logarithm of numbers less than 1. But, there are still gaps in the 
table. How do we find the logarithm of 3; i.e. determine x such that 2x = 3? As noted before, 1 < x < 2 (that 
is, x must be between 1 and 2). x, the logarithm of 3, must be a fractional exponent. We must be able to deter-

mine 2x where x = 
a

b
. 

 Let’s consider how to calculate 2x when x = 
1

1
2

. We can rewrite 
1

1
2

 as 
3

2
. We now consider 

3
22 . Let’s 

square this number and apply the product law of exponents. 

23 3 6
x2 32 2 22 2 2 2 8.

 
     
 
 

23 3
2 2Since 2 8, then 2 8 2.8

 
   

 
 

 Note that 8  is an irrational number and that we rounded it off to the nearest tenth. Since 
3

1.5
2
 , 

then we can add another entry to our table: 

Number Logarithm 
2 1 

2.8 1.5 
4 2 

 We haven’t quite got the logarithm of 3, but we are getting close. It can be shown that the solution to 2x 
= 3 is an irrational number (x cannot be written as a ratio of two 
integers) and that we can approximate x to any desired precision 
using fractional powers. 
 The process that I have led you through is exactly the path-
way that Napier took in constructing his logarithm tables (it took 
him twenty years to do it in the pre-computer and pre-calculator 
days). In our example, we are constructing logarithms to the base 
2. This is signified as follows: log28 = 3 or, in general, logbx = y.  
The inverse operation is signified as 23= 8 or, in general, by = x. 
Hence we have this equivalency: 

y
bb x log x y    

 With this equivalency, we can technically note the two inverses of exponentiation: 

Exponentiation Inverse 
bx = y Computing logarithms  bx log y  
xb = y Extraction of roots x = b y = 

1
by

The list below enumerates all the essential properties of logarithms (for now, just take note of the third 
and fourth property; we shall prove them as an exercise): 

1. Addition property: logb (xy) = logb x + logb y 

2. Subtraction property: b

x
log

y

 
 
 

 = logb x – logb y 
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3. Power property: logb x
n = nlogb x 

4. Root extraction property: n
b b

1
log x log x

n
   
 

 

Until the advent of the hand held calculator, most high school and college textbooks contained logarith-
mic tables as appendices. The base commonly used was 10 and it was signified without a subscript. It was 
called the common logarithm.4 If you have a scientific calculator, the common logarithm key is signified by log. 
For example, log 100 = 2. Try it out with your calculator. The inverse operation is 102 = 100. Here is a table 
of logarithms to the base 10: 

Number Logarithm to the base 10 
0.0001 -4 
0.001 -3 
0.01 -2 
0.1 -1 

1 0 
10 1 

100 2 
1000 3 

10,000 4 

Note the much longer gaps in the table between the numbers. log 1 = 0 and log 10 = 1. In contrast, for 
logarithms to the base 2, log21 = 0 and log22 = 1. It will take more effort to fill in the gaps for logarithms to 
the base 10. Note another key next to the log key on your scientific calculator. It is signified by ln. This loga-
rithm is called the natural logarithm. The base of the natural logarithms is a very famous and significant num-
ber that Leonhard Euler denoted by the letter e.5 e is an irrational number and it is approximately equal to 
2.718281828 …. Why would this number be used as a base? 

John Napier came very close to discovering this number. As far as historians of mathematics can ascer-
tain, e first appeared in history in the context of financial calculations. Deposit that thought in your mental bank 
for a moment. We shall withdraw it after we explore the construction of natural logarithms. 

We noted that 10 is not a very good base of logarithms because of the large gaps. 2 is a better base but it 
still has many gaps. We can try 1 as the base but that really does no good since all powers of 1 are 1. It is not 
good to try a base less than 1 because a fraction less than 1 raised to a power gets smaller and smaller. Take 

note of successive powers of 
1

2
 in the table below: 

                                                 
4 The English mathematician Henry Briggs (1561-1630) developed the first base 10 logarithmic tables. Common logarithms are 
sometimes called Briggsian logarithms in his honor. 
5 Euler may have chosen this letter to stand for exponential. Since the letters a, b, c, and d were already frequently used in mathe-
matics, Euler may have just choose the next available letter in the alphabet to represent this unusual number. It is unlikely that 
Euler choose this letter because of his name. As a Christian (his father was a Calvinist pastor), Euler understood and practiced the 
Christian grace of humility. 
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n n
1

2
 
 
 

 

1 1
0.5

2
  

2 1
0.25

4
  

3 1
0.125

8
  

4 1
0.0625

16
  

5 1
0.03125

32
  

So, let’s try a number between 1 and 2 as a base, say 1.1. Note the successive powers of 1.1 in the table 
below. There is a connection to Pascal’s triangle here. Do you see it? 

n 1.1n 

0 1 
1 1.1 
2 1.21 
3 1.331 
4 1.4641 
5 1.61051 
6 1.771561 
7 1.948717 
8 2.14358881 

Note immediately that these numbers grow slowly and 
that there are many numbers between 1 and 2 before we try to calculate those troublesome gaps. It seems 
that choosing a smaller number would be an even better choice. Let’s try 1.001. In this case, we separate the 
terms in Pascal’s triangle by pairs of zeroes (note how the terms fit neatly into the decimal expansion): 

n 1.001n 

0 1 
1 1.001 
2 1.002001 
3 1.0030003001 
4 1.004006004001 
5 1.005010010005001 
6 1.006015020015006001 
7 1.007021035035021007001 
8 1.008028056070056028008001 

1
1 1

21 1

1 13 3

1 14 46

1 15 10 10 5

1 16 615 20 15  
Pascal’s Triangle 
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At first we may wonder if we will ever reach 2. Eventually we will, yet very slowly. Mathematicians have 
proven that the powers of any number greater than 1 (even slightly greater than 1) will converge to infinity. 
The closer the number is to 1, the slower the rate of growth. 

Although this table contains an excellent density of numbers, the drawback is its slow rate of growth. 
Very large exponents are needed to produce small numbers. For example, 1.0011000  2.716923932. Take note of this 
number (Hint: compare it with the numerical value of e as we defined it earlier in this essay). So, if the expo-
nents were 1,000 times as big, we could make the table more proportionate. So, let’s consider 1.0011000 as a 
base. Now, we are going to raise this base to a fractional power as follows and make use of the product law of 
exponents: 

 

 

 

1 10001 10001000 11000 10001000

2 20002 10001000 21000 10001000

3 30003 10001000 31000 10001000

1.001 1.001 1.001 1.001

1.001 1.001 1.001 1.001

1.001 1.001 1.001 1.001

etc.







  

  

  

 

Note that we are successively raising 1.0011000 to a fractional power in steps of 
1

1000
. Converting these 

fractions to decimals, we get: 

1

1000

0.001

2

1000

0.002

3

1000

0.003

4

1000

0.004

etc.  

Note also that we get the same results as before. Inspect the table below: 

(1.0011000)0 1.0010 1 
(1.0011000)0.001 1.0011 1.001 
(1.0011000)0.002 1.0012 1.002001 
(1.0011000)0.003 1.0013 1.0030003001 
(1.0011000)0.004 1.0014 1.004006004001 
(1.0011000)0.005 1.0015 1.005010010005001 
(1.0011000)0.006 1.0016 1.006015020015006001 
(1.0011000)0.007 1.0017 1.007021035035021007001 
(1.0011000)0.008 1.0018 1.008028056070056028008001 

Note the pattern that has developed. The exponents and the corresponding results do not grow dispropor-
tionately. Yet, the density is unimpaired. Therefore, the base of 1.0011000 is an excellent choice. Can we im-
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prove on this choice? Yes. Consider the base of 1.000110000. Why stop there? What about the base of 
1.00001100000? We could go “on and on” ad infinitum with this type of procedure until we converge to the nat-
ural or best number. What is this number? It is e, the base of the natural logarithms. Note the table below: 

1.0011000 2.716923932
1.000110000 2.718145927
1.00001100000 2.718268237
1.0000011000000 2.718280469
1.000000110000000 2.718281693
1.00000001100000000 2.718281815
e 2.718281828

Let’s withdraw our previously deposited financial thought from the bank. What does e have to do with 
money? Central to the concept of money is the concept of interest. Interest is what banks charge you for 
borrowing money from them. If you do not have the money to buy an item and the bank does, then the 
bank loans you the purchasing power to buy the item (this is called the principal). In return for this loan, the 
bank expects a repayment of this principal over time. An extra amount is charged to you for the use of this 
principal. This amount is called interest. It is a way to “pay the bank back” for its loss of purchasing power 
due to its loan to you. 

The Bible presupposes time and interest in its teaching about restitution (see Exodus 22:1-15; Leviticus 6:1-
7; Numbers 5:5-8; Luke 19:1-9). Restitution means to “make amends or to recompense an injury.” The Bi-
ble teaches two forms of restitution (between man and God and between man and man). Man’s sin against 
God is atoned for by the blood of Jesus Christ (man is “made right” with God through faith in the person 
and work of Jesus Christ). Man’s sin against man is “made right” via restitution. In the case of theft, the Bi-
ble requires payment of interest for the stolen goods (cf. Leviticus 6:4-5; Exodus 22:1). This interest payment 
recognizes that when a man steals another man’s goods, he is stealing another man’s capital. By robbing man 
of his capital, a thief is depriving man of any increase on that capital during the time that it is in the thief’s 
possession. Not only must the property be restored by a thief, a thief must also restore its value over time. In the 
same sense (minus the “theft” concept), this is what banks do when they charge interest for money bor-
rowed. 

There are two types of interest, simple and compound. Both are governed by mathematical formulas. 
The simple interest formula for deriving how much you must pay a bank back (called the maturity value) for a 
loan is: 

S = P(1 + rt) 

where S = maturity value, P = the principal (amount of the loan), t = interest rate per time period, and t = 
length of time you take to repay the principal. Note that r and t must be in the same time units (e.g., interest 

per year with a repayment schedule of x years). Suppose you borrow $1000 at 12% per year 
12

0.12
100
  
 

 in-

terest for 3 years. What must you pay back? 

S = 1000[1 + 0.12(3)] 
S = 1000 (1.36) = 1360 

 The maturity value is $1360. Normally, with a bank, you pay the loan back on a monthly basis. Your 
payments would be $37.78 per month. In three years you would pay back the $1000 plus an interest charge 
of $360 for using the money. 
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 Suppose that the interest rate is 1% 
1

0.01
100
  
 

 per month and your payment schedule is 36 months 

(3 years). What is S, the maturity value then? 

S = 1000[1 + 0.01(36)] 
S = 1000(1.36) = 1360 

 The maturity value would be the same. 
 Compound interest is governed by this formula: 

S = P(1 + r)t 

where, as before, S = maturity value, P = the principal, r = interest rate per time period, and t = length of 
time you take to repay the principal. Let’s now consider the same situation: a loan of $1000 at 12% interest 
per year with a repayment schedule of 3 years. What is S? 

S = 1000(1 + 0.12)3  
S = 1000 (1.12)3 = 1404.93 

 Note the increase in the maturity value from $1360 calculated at simple interest to $1404.93 calculated at 
compound interest ($39.03 per month repayment). What is the increase? $44.93. Let’s now increase the loan 
repayment to 15 years. What happens then? S, under simple interest is: 

S = 1000 [1 + 0.12(15)] 
S = 1000 (2.8) = 2800 

 It pays to pay off a loan early! Although your monthly payments are only $15.56 a month 
2800

180
 
 
 

, you 

are paying $1800 interest on a $1000 loan.  No wonder why, in Scripture, a loan for emergency needs was lim-
ited to 6 years (see Deuteronomy 15:1-6). 
 The situation is much worse with compound interest.  

S = 1000(1 + 0.12)15 
S = 1000(1.12)15 = 5473.57 

In this case your monthly payments are $30.41 a month 
5473.57

180
 
 
 

. But, you are paying $4473.57 interest 

on a $1000 loan. Ouch! The lesson to be learned about borrowing money: the higher the interest rate and the long-
er the repayment schedule, the more you pay in interest. 

Some banks compute compounded interest not once but several times a year. If an annual interest rate of 
12% is compounded semiannually, the bank will use one-half of the annual interest rate as the rate per peri-
od. Hence, in one year a principal of $1000 will be compounded twice, each time at a rate of 6%. This will 
amount to 1000  1.062 or $1123.60, about $3.60 cents more than the same principal would yield if com-
pounded annually at 12%. 

The banking industry uses all kinds of compounding periods – from annual to semiannual to quarterly to 
monthly to weekly to even daily. Suppose the compounding is done n times a year. For each period, the bank 

uses the annual interest divided by n; i.e., 
r

n
. Since in t years there are nt periods, the formula for compound 

interest becomes: 
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nt
r

S P 1
n

   
 

 

If n = 1 (compounded annually), the formula returns to its original state, S = P (1 + r)t. Let’s compare 
what happens to a $1000 loan at 12% compounded for different periods. 

 
Period 

 
nt 

r

n
 

 
S 

Annually 1 0.12 $1120.00
Semiannually 2 0.06 $1123.60
Quarterly 4 0.03 $1125.51
Monthly 12 0.01 $1126.83
Weekly 52 0.0023077 $1127.34
Daily 365 0.0003288 $1127.49

 $7.49 is the extra that a bank receives from compounding daily as against compounding annually. It 
hardly makes a difference how the interest is compounded. In this case, the difference lies in the principal. 
The larger the principal, the larger the interest charged on a daily basis. Try the formula for the above peri-
ods with a principal of $1,000,000 and note what happens. Note that the reverse of borrowing money is in-
vesting money. Investing money at compound interest generates, over the long term, significant earnings. 
What bites you one way (borrowing) rewards you the other way (investing). 
 Let’s now consider a hypothetical case. Let’s assume that the bank loans money at an interest rate of 
100%. Of course, no one in his or her right mind would take out a loan at this rate. And, if you could find 
an investment vehicle that returns 100% you would probably “jump on it.” Let’s consider what happens in 
this case. Instead of a principal of $1000, let P = 1 and t = 1. Our equation now becomes: 

n
1

S P 1
n

   
 

 

 Let’s see what happens as we vary n. 

 
n 

1
1

n
  

 
S 

1 2 2 
2 1.5 2.25 
3 1.333… 2.37037 
4 1.25 2.44141 
5 1.2 2.48832 
10 1.1 2.59374 
50 1.02 2.69159 
100 1.01 2.70481 
1,000 1.001 2.71692 
10,0000 1.0001 2.71815 
100,000 1.00001 2.71827 
1,000,000 1.000001 2.71828 
10,000,000 1.0000001 2.71828 
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 Lo and behold, the maturity value approaches e, the base of the natural logarithms. Mathematicians have 
signified this relationship as follows: 

n

n

1
lim 1 e 2.71828

n

    
 

 

 Using rhetorical algebra, these symbols are read as follows: The limit as n approaches infinity (or in-

creases without bound) of the sequence of numbers defined by 
n

1
1

n
  
 

 converges to e. 

This is almost too incredible to comprehend. Yet, it is another wonder of mathematics. The marvelous 
connection between the base of the natural logarithms and the calculation of compound interest at 100% is 
too amazing to be just a coincidence. Is it not one of the astounding particular details in the Creator’s grand 
design? 
 


